期刊文献+

基于胶囊网络的汉字笔迹鉴定算法 被引量:3

Research on Chinese Character Handwriting Identification Based on Capsule Network
下载PDF
导出
摘要 由于采集脱机汉字手写样本时忽略了书写人的心理和生理等因素对书写活动的影响,因而传统笔迹鉴定算法的泛化能力较低。针对上述问题,提出基于胶囊网络的汉字笔迹鉴定算法,并构建了跟踪采集数据集以模拟复杂背景下产生的汉字。胶囊网络构建活动向量表示特定类型的实例化参数,通过动态路由算法将活动向量路由到下一层相应的胶囊中,使下一层胶囊得到更清晰的输入信号。分别采用5种算法对HWDB1.1数据集和跟踪采集数据集进行了测试,实验结果表明:本文算法的分类准确率比其他4种算法的都高,HWDB1.1数据集和跟踪采集数据集中算法的分类准确率分别为95.82%,94.39%;本文算法具有较强的泛化性能,对训练样本数的依赖程度较低,弥补了卷积神经网络池化层的信息丢失缺陷。 Since the infiuence of the psychological and physiological factors of the writer on the writing activity was neglected while collecting the offline Chinese handwritten samples, the generalization ability of the traditional handwriting identification algorithm was low. A Chinese character handwriting identification algorithm based on capsule network was proposed, and a complex background of tracking the collected datasets to simulate Chinese characters was constructed. The capsule network constructed an activity vector to represent a specific type of instantiation parameter. The dynamic routing algorithm routed the activity vector to the corresponding capsule in the next layer to enable the next layer capsule to get a clearer input signal. The experimental results of five algorithms in HWDB dataset and tracking acquisition dataset showed that the classification accuracy of this algorithm was higher than that of the other four algorithms. The classification accuracy of HWDB dataset and tracking dataset algorithm were respectively 95.82% and 94.39%. The algorithm had strong generalization performance and low dependence on the number of training samples, making up for the convolutional neural network pooling layer information lost.
作者 陈健 周平 CHEN Jian;ZHOU Ping(School of Information Science and Technology,Zhejiang Sci-Tech University,Hangzhou 310018,China)
出处 《包装学报》 2018年第5期51-56,共6页 Packaging Journal
关键词 胶囊网络 笔迹鉴定 活动向量 同变性 CapsNets handwriting identification activity vector location equivariance
  • 相关文献

参考文献4

二级参考文献24

  • 1许丙权,胡刚,王娟.个人的书写习惯对签字笔笔痕的影响[J].中国公共安全(学术版),2012(3):110-112. 被引量:3
  • 2邹明理.新《民事诉讼法》司法鉴定立法的进步与不足——对新民诉法涉及修改鉴定规定的几点认识[J].中国司法鉴定,2012(6):1-6. 被引量:11
  • 3Bovic A C, Clark M, Geisler W S. Multichannel texture analysis using localized spatial filters [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(1): 55~73
  • 4Hamamoto Y, et al. Recognition of handprinted Chinese characters using Gabor features [A]. In: Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, 1995. 819~823
  • 5Jain A K, Bolle R, Pankanti S. Biometrics Personal Identification in Networked Society [M]. Boston: Kluwer Academic Publishers, 1999
  • 6Plamondon R, Lorette G. Automatic signature verification and writer identification-The state of the art [J]. Pattern Recognition, 1989, 22(2): 107~131
  • 7Laurenz Wiskott, Fellous Jean-Marc, Norbert Kruger, et al. Face recognition by elastic graph matching [J]. IEEE Transations on Pattern Analysis and Machine Intelligence, 1997, 19(7): 775~779
  • 8Said H E S, Tan T N, Baker K D. Personal identification based on handwriting [J]. Pattern Recognition, 2000, 33(1): 149~160
  • 9Zhu Y, Wang Y, Tan T N. Biometric personal identification based on handwriting [A]. In: Proceedings of the 15th International Conference on Pattern Recognition, Barcelona, 2000. 801~804
  • 10Ohanian P P, Dubes R C. Performance evaluation for four classes of textural features [J]. Pattern Recognition, 1992, 25(6): 819~833

共引文献39

同被引文献37

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部