期刊文献+

基于改进蚁群算法的家庭机器人路径规划研究 被引量:1

Path Planning of Family Robots Based on Improved Ant Colony Algorithm
下载PDF
导出
摘要 针对基本蚁群优化算法(ACO)在家用机器人路径规划中存在易早熟、收敛时间长、效率不高、获得路径的最佳值不稳定且不准确等现象,提出了一种改进的IACO计算方法。通过动态调整信息素增强系数Q值和启发因子α来提高收敛速度和效率;采用设置信息素阈值、改进信息素的计算方式来避免早熟;通过改进转移概率的计算方法和引入路径选择的随机机制使获得的路径最优解的值更加稳定、更加准确。从仿真数据结果看出,改进后的IACO算法在收敛速度、运行效率、最优路径的解方面较基本的ACO算法优越。 Aiming at the problems of precocity,long convergence time,inefficiency,instability and inaccuracy of the basic ant colony optimization algorithm(ACO)in the path planning of home robots,an improved IACO algorithm is proposed.By dynamically adjusting the enhancement coefficient Q and heuristic factor alpha of pheromone,the convergence speed and efficiency are improved.By setting pheromone threshold and improving pheromone to avoid premature.By improving the calculation method of transfer probability and introducing the random mechanism of path selection,the value of optimal path solution is more stable and accurate.The simulation results show that the improved IACO algorithm is superior to the basic ACO algorithm in terms of convergence speed,operation efficiency and optimal path solution.
作者 王学忠 徐丽萍 李美莲 WANG Xuezhong;XU Liping(AnhuiSanlian University,Hefei 230601,China)
机构地区 安徽三联学院
出处 《皖西学院学报》 2018年第5期46-50,共5页 Journal of West Anhui University
基金 安徽三联学院校级自然科学重点项目(KJZD2018001) 安徽高校自然科学研究重点项目(KJ2018A0601)
关键词 ACO算法 移动机器人 路径规划 ACO algorithm mobile robot path planning
  • 相关文献

参考文献5

二级参考文献43

  • 1况菲,王耀南.基于混合人工势场-遗传算法的移动机器人路径规划仿真研究[J].系统仿真学报,2006,18(3):774-777. 被引量:43
  • 2王肖青,王奇志.传统人工势场的改进[J].计算机技术与发展,2006,16(4):96-98. 被引量:15
  • 3Wu Liting, Tian Yuan, Yang Yiping.Real-time path planning for aerial robot in real environments[C]//Industrial Elec- tronics Conference, IECON, 2009: 2320-2325.
  • 4Meng Zhongjie, Huang Panfeng, Yah Jie.Trajectory planning for hypersonic vehicle using improved sparse A* algo- rithm[C]//Intemational Conference on Advanced Intelli- gent Mechatronics, AIM.USA: IEEE, 2008: 1152-1157.
  • 5Huo C L, Lai T Y.The preliminary study on multi-swarm sharing particle swarm optimization applied to UAV path planning problem[C]~~2011 IEEE Congress on Evolutionary Computation, 2011 : 1770-1776.
  • 6Guo Jianming, Liu Liang.A study of improvement of D* algorithms for mobile robot path planning in partial un- known environments[J].Kybernetes, 2010,39(6) :935-945.
  • 7Qi Zhang, Shao Zhenhai, Ping Y S, et al.An improved heuristic algorithm for UAV path planning in 3D envi- ronment[C]//2010 2nd International Conference on Intel- ligent Human-Machine Systems and Cybernetics, 2010: 258-260.
  • 8Szczerba R J, Galkowski P, Glicktein I S, et al.Robust algorithm for real-time route planning[J].Aerospace and Electronic Systems,2000,36(3) :869-878.
  • 9Fu Xiaowei,Gao Xiaoguang.Genetic algorithm with adap- tive immigrants for dynamic flight path planning[J].Intel- ligent Computing and Intelligent Systems,2010:630-634.
  • 10DORIGO M, MANIEZZO V, COLORNI A. Ant system:Optimization by a colony of cooperating agents[J]. IEEETransactions on Systems, Man, and Cybernetics. Part B:Cybernetics, 1996,26(1): 29-41.

共引文献180

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部