期刊文献+

基于深度学习的字符识别技术研究 被引量:2

Research on Character Recognition Based on Depth Learning
下载PDF
导出
摘要 卷积神经网络因为其高效的识别率使得它迅速成为人工神经网络领域最热门的研究方向。本文,把卷积神经网络应用到MNIST数据集的识别上,获得了较好的识别率。在LetNet-5的基础上设计一个6C-2S-12C-2S的CNN-1网络,采用MNIST数据库的一万个样本训练80次后达到最佳的识别效果。同时,分析三种网络迭代次数和错误率之间的曲线图,得出最佳的CNN-1网络,池化降低训练参数提高网络性能。CNN-1网络经过120次迭代时,错误率仅为1.18%,明显低于其他方法。 The convolution neural network has quickly become the hottest research direction in the feld of artifcial neural networks because of its high recognition rate. In this paper, the convolution neural network (convolution neural network) is applied to the recognition of MNIST data sets, and a better recognition rate is obtained. Design a 6C-2S-12C-2S CNN-1 network on the basis of LetNet-5. The ten thousand samples of the MNIST database are trained 80 times to achieve the best recognition effect. At the same time, the graph between the three network iterations and the error rate is analyzed, and the best CNN-1 network is obtained. The pool reduces the training parameters to improve the network performance. After 120 iterations, the error rate of CNN-1 network is only 1.18%, which is signifcantly lower than other methods.
作者 崔丽 CUI Li(Sichuan Vocational College of Information Technology,Department of Digital Art,Guangyuan 628040 China)
出处 《自动化技术与应用》 2018年第11期120-125,共6页 Techniques of Automation and Applications
关键词 人工神经网络 深度学习 卷积神经网络 字符识别 artifcial neural network deep learning convolutional neural network character recognition
  • 相关文献

参考文献7

二级参考文献42

  • 1芮挺,沈春林,丁健,张金林.基于主分量分析的手写数字字符识别[J].小型微型计算机系统,2005,26(2):289-292. 被引量:22
  • 2申家振,张艳宁,刘涛.基于形状上下文的形状匹配[J].微电子学与计算机,2005,22(4):144-146. 被引量:15
  • 3洪留荣,王耀才.应用图论和基元方向信息的手写数字识别[J].计算机工程,2006,32(3):34-36. 被引量:8
  • 4张伟,王克俭,秦臻.基于神经网络的数字识别的研究[J].微电子学与计算机,2006,23(8):206-208. 被引量:23
  • 5LIU C L,YIN F,WANG Q F,et al.ICDAR 2011Chinese handwriting recognition competition[A].Proceedings of IEEE International Conference on Document Analysis and Recognition[C].Beijing,China,2011.1464-1469.
  • 6LEUNG K C,LEUNG C H.Recognifon of handwritten Chinese characters by critical region analysis[J].Pattern Recognition,2010,43(3):949-961.
  • 7GAO T F,LIU C L.High accuracy handwritten Chinese character recognition using LDA-based compound distances[J].Pattern Recognition,2008,41(11):3442-3451.
  • 8TAO D P,LIANG L Y,JIN L W,et al.Similar handwritten Chinese character recognition by kernel discriminative locality alignment[J].Pattern Recognition Letters,2014,35(1):186-194.
  • 9BENGIO Y.Leamnig deep architectures for AI[J].Foundations and trends in Machine Learning,2009,2(1):1-127.
  • 10BENGIO Y,COURVILLE A.Deep Learning of Representations[M].Handbook on Neural Information Processing.Springer Berlin Heidelberg,2013.

共引文献168

同被引文献27

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部