期刊文献+

基于KL散度的驾驶员驾驶习性非监督聚类 被引量:6

Unsupervised Clustering of Driving Styles Based on KL Divergence
下载PDF
导出
摘要 为深入理解不同驾驶员的驾驶行为特点,本文中提出了一种基于KL散度的驾驶员驾驶习性非监督聚类算法。首先,建立了驾驶员驾驶数据实车道路试验采集平台,对84位驾驶员进行了测试;接着,将每名驾驶员的驾驶数据视为一个高斯混合模型(GMM),采取EM算法对其进行参数估计;最后,通过蒙特卡洛算法对各GMM之间的KL散度进行估计,从而获得不同驾驶员差异性的定量描述,将驾驶员聚为不同习性类别。对聚类后各类驾驶员的驾驶数据的统计分析表明,所提出的非监督聚类算法能有效实现不同驾驶习性驾驶员的聚类。 In order to understand the driving style features of different drivers, an unsupervised clustering algorithm for the driving styles of drivers is proposed in this paper based on Kullbaek-Leibler (KL) divergence. Firstly an acquisition platform for the driving data of drivers in real vehicle test is built, and 84 drivers are tested. Then the driving data of each driver are regarded as a specific Gaussian mixture model (GMM) , and whose parameters are estimated by using expectation maximization algorithm. Finally Monte Carlo algorithm is employed to esti- mate the KL divergence between GMMs, hence the quantitative description on the discrepancies of different drivers is obtained and drivers are clustered into different eatagories of style. The results of statistical analysis on the driving data of drivers in each eategory alter clustering show that the unsupervised clustering algorithm proposed can effectively achieve the elustereing of drivers with different driving styles.
作者 朱冰 蒋渊德 邓伟文 杨顺 何睿 苏琛 Zhu Bing;Jiang Yuande;Deng Weiwen;Yang Shun;He Rui;Su Chen(Jilin University,State Key Laboratory of Automotive Simulation and Control,Changchun 130025)
机构地区 吉林大学
出处 《汽车工程》 EI CSCD 北大核心 2018年第11期1317-1323,共7页 Automotive Engineering
基金 国家重点研发计划(2016YFB0100904)、国家自然科学基金(51775235,U1564211)和吉林省自然科学基金(20170101138JC)资助.
关键词 驾驶习性 聚类 KL散度 高斯混合模型 蒙特卡洛算法 driving style clustering KL divergence GMM Monte Carlo algorithm
  • 相关文献

参考文献3

二级参考文献21

  • 1李力,王飞跃,郑南宁,张毅.驾驶行为智能分析的研究与发展[J].自动化学报,2007,33(10):1014-1022. 被引量:34
  • 2Farid M N, Kopf M, Bubb H, et al. Methods to develop a driver observation system used in an active safety system[J]. VDI Berichte, 2006, 1960.. 639- 650.
  • 3Wang M, Rajamani R. Adaptive cruise control sys- tem design and its impact on highway traffic flow [C]//Proc of American Control Conf Anchorage, AK, 2002: 3690-3695.
  • 4Nishiwaki Y, Miyajima C, Kitaoka N, et al. Gener- ation of pedal operation patterns of individual drivers i,n car-followi, ng for personalized cruise control[C] // Proceeding of Intelligent Vehicles Symposium, 2007 : 823-827.
  • 5Pentland Alex, Liu Andrew. Modeling and predic- tion of human behavior[J]. Neural Computation, 1999, 11(1) :229~242.
  • 6Macadam Charles C. Understanding and modeling the human driver[J]. Vehicle System Dynamics, 2003, 40(1) :101-134.
  • 7Pongsathorn Raksincharoensak. Direct yaw moment control system based on driver behaviour recognition[J] Vehicle System Dynamics, 2008, 46(1): 911~ 921.
  • 8Amardeep Sathyanarayana, Pinar Boyraz, Zelam Pu- rohit,et al. Driver adaptive and context aware active safety systems using CAN-bus signals [C]//Pro- ceeding of IEEE Intelligent Vehicle Symposium, 2010:21-24.
  • 9宗长富,杨肖,王畅,等.基于多维高斯隐马尔科夫模型的驾驶员转向行为辨识方法[J].吉林大学学报:工学版,2009,39(增刊):28-31.
  • 10New Tin Lay, Wang Ye. Automatic detection of vo- cal segments in popular songs[C]//ISMIR, 2004.. 138-145.

共引文献17

同被引文献38

引证文献6

二级引证文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部