期刊文献+

一种SAR影像冰水边缘线提取算法

Novel sea ice edge detection method in SAR imagery
下载PDF
导出
摘要 针对在低海冰密集度区域采用被动微波获取的海冰密集度数据会低估真实的海冰密集度值,从而不能准确地得到冰水边缘线位置的问题,文中基于高分辨率合成孔径雷达影像设计并实现了在低海冰密集度区域准确提取冰水边缘线的算法.该算法将海冰在合成孔径雷达影像中强度和对比度差异较大的曲线特征,通过边缘检测的方法统一为边缘信息.根据海冰与海水区域边缘信息丰富程度的差异,采用曲波域多尺度主动轮廓模型迭代搜索边缘信息丰富区域的轮廓,即为冰水边缘线的位置.实验表明,该方法能够在低海冰密集度区域准确地提取冰水边缘线,与采用被动微波海冰密集度数据得到的冰水边缘线相比,准确率有了大幅的提升. The paper proposes an ice edge detection method in synthetic aperture radar (SAN) images especially where sea ice concentration is low and might be underestimated by using passive microwave data. According to the multi scales and orientations of curve like features in the marginal ice zone (MIZ) in SAN images, the edge detection method is chosen to unify the curve features of different backscatters and contrasts into edge information. Based on the difference of edge information richness between MIZ and open water, the curvelet based multiscale strategy active contour is used to detect the ice edge. Experimental results show a significant increase in accuracy compared with the ice edge definition from passive microwave sea ice concentration.
作者 刘建歌 慕德俊 LIU Jiange;MU Dejun(School of Automation,Northwestern Polytechnical Univ.,Xi'an 710072,China)
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2018年第6期106-111,共6页 Journal of Xidian University
关键词 合成孔径雷达 冰水边缘线 海冰边缘区 曲波变换 主动轮廓 synthetic aperture radar ice edge marginal ice zone curvelet transform active contour
  • 相关文献

参考文献2

二级参考文献13

  • 1Candes E J,Donoho D L.Curvelets:a Surprisingly Effective Nonadaptive Representation for Objects with Edges[M].Nashville:Vanderbilt University Press,2000:105-120.
  • 2Candes E J,Demanet L,Donoho D L,et al.Fast Discrete Curvelet Transforms[J].Multiscal Modeling and Simulation,2006,5(3):861-899.
  • 3StarckJ L,Candès E J,Donoho D L.The Curvelet Transform for Image Denoising[J].IEEE Transactions on Image Processing,2002,11(6):670-684.
  • 4Ma J,Plonka G.A Review of Curvelets and Recent Applications[J].IEEE Signal Processing Magazine,2010,27(2):118-133.
  • 5Daubechies I,Defrise M,De Mol C.An Iterative Thresholding Algorithm for Linear Inverse Problems[J].Communications on Pure & Applied Mathematics,2004,57(11):1413-1457.
  • 6Ma Jianwei.Improved Iterative Curvelet Thresholding for Compressed Sensing and Measurement[J].IEEE Transactions on Instrumentation and Measurement,2011,60(1):126-136.
  • 7Perona P,Malik J.Scale-space and Edge Detection Using Anisotropic Diffusion[J].IEEE Pattern Analysis and Machine Intelligence,1990,12:629-639.
  • 8Brox T,Weickert J,Burgeth B,et al.Nonlinear Structure Tensors[J].Image and Vision Computing,2006,24(1):41-55.
  • 9Ma Jianwei,Gerlind P.Combined Curvelet Shrinkage and Nonlinear Anisotropic Diffusion[J].IEEE Transactions on Image Processing,2007,16(9):2198-2206.
  • 10Weisstein E W.Chi-Squared Distribution[EB/OL].[2013-08-04].http://mathworld.wolfram.com/Chi-SquaredDistribution.html.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部