期刊文献+

大数据环境下网络危机信息挖掘与应急决策模型研究 被引量:1

下载PDF
导出
摘要 随着大数据时代的到来,世界各地不法组织和个人在现实世界和网络虚拟空间的活动轨迹以数据的形式存储下来形成海量的危机信息数据源。大数据环境下如何利用数据挖掘技术,从海量舆情数据中检索分析出有用信息进行决策是摆在管理者面前的艰巨任务。本文在总结大数据背景下涉危舆情信息特点的基础上,归纳、总结和分析了常用的涉危舆情信息挖掘方法并给出基于舆情挖掘的应急决策概念模型。本文结论可为公共危机应急决策者和相关技术人员提供恰当的舆情挖掘方法建议,进一步为防控社会公共危机工作提供理论支持和技术参考。 With the new era of big data, the tracks of public crisis-related organizations and individuals in the real world and network virtual space are stored in the form of data to form a large number of data sources related to public crisis. Under the big data environment, how to use data mining technology to retrieve and analyze useful information from mass public opinion data to make decisions is a difficult task that the managers facing. On the basis of summarizing the characteristics of public opinion information related to public crisis in the context of big data, this paper generalizes, summarizes and analyzes the commonly used public opinion related information mining methods and presents a conceptual model of emergency decision-making based on public opinion mining. The conclusion of this paper can provide appropriate public opinion mining methods and suggestions for decision makers and technical personnel of prevention and control public crises, and further provide theoretical support and technical reference for prevention and control public crises work.
出处 《科技创新导报》 2018年第15期136-138,共3页 Science and Technology Innovation Herald
基金 河北省统计科学研究计划项目"大数据环境下反恐情报数据挖掘与决策支持研究"(项目编号:2017HY03) 廊坊市科技支撑计划项目"面向舆情大数据的反恐情报决策关键技术研究"(项目编号:2017013188)
关键词 大数据 网络危机信息 数据挖掘技术 应急决策 Big data Public opinion related to public crises Information mining technology Emergency decisionmaking.
  • 相关文献

参考文献4

二级参考文献22

  • 1耿焕同,蔡庆生,赵鹏,于琨.一种基于词共现图的文档自动摘要研究[J].情报学报,2005,24(6):651-656. 被引量:15
  • 2戴艳梅.美国反恐情报工作改革及其启示[J].武警学院学报,2006,22(6):30-33. 被引量:20
  • 3MORI M, MIURA T, SHIOYA I. Topic detection and tracking for news web pages[C]//Proceedings of the 2006 ACM International Conference on Web Intelligence. Washington, DC, USA, 2006: 338-342.
  • 4ALLAN J, CARBONELL J, DODDINGTON G, et al. Topic detection and tracking pilot study: final report[C]//Proceedings of the DARPA Broadcast News Transcription and Understanding Workshop. San Francisco, USA: Morgan Kaufmann Publisher Inc, 1998: 194-218.
  • 5LIU Zitao, YU Wenchao, CHEN Wei, et al. Short text feature selection for microblog mining[C]//The 4th International Conference on Computational Intelligence and Software Engineering. Wuhan, China, 2010: 1-4.
  • 6张华平.NLPIR微博内容语料库-23万条[EB/OL]. (2012-02-14)[2012-05-20]. http://www.nlpir.org/?actionviewnewsitemid231.2012,02,14/2012,02,18.
  • 7张华平.ICTCLAS2012版本SDK发布(u0106版本修正了UTF8下的bug)[EB/OL]. (2011-12-31)[2012-05-20]. http://www.nlpir.org/?actionviewnewsitemid229.2011,12,31/2012,02,18.
  • 8TRIVISON D. Term cooccurrence in cited/citing journal articles as a measure of document similarity[J]. Information Processing & Management, 1987, 23(3): 183-194.
  • 9耿焕同,蔡庆生,于琨,等.一种基于词共现图的文档主题词自动抽取算法[J].南京大学学报:自然科学, 2006, 42(2): 156-162.
  • 10乔亚男,齐勇,侯迪.一种高稳定性词汇共现模型[J].西安交通大学学报,2009,43(6):24-27. 被引量:2

共引文献120

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部