期刊文献+

锥形束CT引导下胸上段食管癌摆位误差及计划靶区外放边界研究 被引量:8

Analysis of the upper segment esophageal setup errors and planning target margin based on CBCT for esophageal radiation with thermoplastic film immobilized
原文传递
导出
摘要 目的研究锥形束CT调强治疗胸上段食管癌患者的摆位误差,推算其靶区外放边界。方法采用瓦里安iX TM直线加速器治疗胸上段食管癌40例。所有入组患者均常规摆位后行CBCT,治疗床在线校正后,再次CBCT,治疗结束后再次CBCT。分别获取摆位后、治疗前、治疗后X射线容积影像,所有容积图像采用自动骨性和手动微调的配准方式与计划CT配准后,即可获得患者前后(腹背)、左右、上下(头脚)误差,分析摆位误差及PTV的外放边界。结果患者扫描CBCT共计956次,所有入组患者分次间上下、左右、前后误差均减小(Pearson=-0. 523,-0. 511,-0. 562,P <0. 05),全组患者摆位误差在左右(x)、上下(y)、前后(z)方向分别为(0. 22±2. 94)、(1. 51±3. 22)、(-1. 89±1. 38) mm,由公式计算出CTV在x、y、z方向分别需外放5. 16、5. 87、4. 52 mm。结论锥形束CT可明显减小胸上段食管癌患者的摆位误差,从而为缩小CTV的外放边界提供依据。 Objective To evaluate the setup errors for the upper segment esophageal cancer with cone beam CT( CBCT) in esophageal patients immobilized by thermoplastic film,and to probe the margins from the esophageal clinical target volume( CTV) in 3 directions. Methods A total of 40 patients treated by Varian i XTM Linear accelerator with upper segment esophageal cancer were enrolled. During the treatment,a CBCT was acquired on a daily basis after conventional position and was registered to the planning CT to determine initial inter-fraction error. Then a second CBCT scan was performed to calculate residual inter-fraction error after the couch online correction. After the RT delivery,a final CBCT was acquired to assess intra-fraction motion. Results A total of 956 CBCT images were acquired from 40 patients. After couch online correction,the inter-fractional setup errors in x y z were significantly reduced( Pearson =-0. 523,-0. 511,-0. 562,P〈 0. 05). The setup errors on( left-right),( superior-inferior),( anterior-posterior) translational directions were( 0. 22 ± 2. 94) mm,( 1. 51 ± 3. 22) mm,(-1. 89 ± 1. 38) mm,and the margins from CTV were recommended as not less than 5. 16 mm,5. 87 mm,4. 52 mm in,and direction,respectively. Conclusion For the upper segment esophageal cancer patients immobilized by thermoplastic film,which recommended to reduce the external boundary of CTV,respectively. The position immobilized method and the positioning workflow should be further improved in order to reduce the influence of breathing movement on setup errors.
作者 时勇 闫勤英 李东 张芬 张敏 刘艳丽 陈英 SHI Yong;YAN Qinying;LI Dong;ZHANG Fen;ZHANG Min;LIU Yanli;CHEN Ying(Department of Radiation Oncology,Tengzhou Central People's Hospital,Tengzhou 277500 China)
出处 《中国辐射卫生》 2018年第4期417-420,共4页 Chinese Journal of Radiological Health
基金 国家重点研发计划资助(017YFC0107502)
关键词 锥形束CT 胸上段食管癌 摆位误差 Cone Beam CT Upper Segment Esophageal Setup Error
  • 相关文献

参考文献4

二级参考文献38

  • 1Li G, Citrin D, Camphansen K, et al. Advances in 4D medical imaging and 4D radiation therapy. Technol Cancer Res Treat, 2008, 7:67-81.
  • 2Giraud P, Yorke E, Jiang S, et al. Reduction of organ motion effects in IMRT and conformal 3D radiation delivery by using gating and tracking techniques. Cancer Radiother, 2006, 10:269 - 282.
  • 3Evans PM. Anatomical imaging for radiotherapy. Phys Med Biol, 2008, 53 : R151-191.
  • 4Jaffray D, Kupelian P, Djemil T, et al. Review of image-guided radiation therapy. Expert Rev Anticancer Ther, 2007, 7:89-103.
  • 5Weiss E, Wijesooriya K, Dill SV, et al. Tumor and normal tissue motion in the thorax during respiration: analysis of volumetric and positional variations using 4D-CT. Int Radiat Oncol Biol Phys, 2007, 67:296-307.
  • 6Liu HH, Baiter P, Tutt T, et ai. Assessing respiration-induced tumor motion and internal target volume using four-dimensional computed tomography for radiotherapy of lung cancer. Int J Radiat Oncol Biol Phys, 2007, 68:531-540.
  • 7Kim YS, Park SH, Ahn SD, et al. Differences in abdominal organ movement between supine and prone positions measured using four- dimensional computed tomography. Radiother Oncol, 2007, 85 : 424-428.
  • 8Seppenwoolde Y, Shirato H, Kitamura K, et al. Precise and real- time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys, 2002, 53:822-834.
  • 9Underberg RWM, Lagerwaard FJ, Slotman BJ, et al. Use of maximum intensity projections (MIP) for target volume generation in 4DCT scans for lung cancer. Int J Radiat Oncol Biol Phys, 2005, 63 : 253-260.
  • 10Rietzel E, Liu AK, Chen GT, et al. Maximum-intensity volumes for fast contouring of lung tumors including respiratory motion in 4DCT planning. Int J Radiat Oneol Biol Phys, 2008, 71:1245- 1252.

共引文献54

同被引文献68

引证文献8

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部