期刊文献+

大功率激光焊背面焊缝宽度神经网络预测 被引量:12

Weldment back of weld width prediction based on neural network during high-power laser welding
下载PDF
导出
摘要 针对焊接过程中熔透及焊缝背面成形难以直接检测的问题,通过焊件正面和侧面的传感特征信息,对焊件背面的焊缝宽度进行预测.用视觉传感器获取激光焊接过程中包含焊接特征信息的图像,对图像进行分割分层、模式识别和空域图像处理,准确提取焊接特征信息,发现焊接特征信息随着焊接路径的变化有着相应的变化趋势.建立包含两个隐含层的贝叶斯神经网络,用提取到的9组特征信息作为输入,对焊件背面焊缝宽度进行预测.通过10组焊件背面焊缝宽度的预测值与实际值的比较,验证了贝叶斯神经网络具有良好的预测能力,在焊缝不理想的状态下,也具有较好的预测能力. In high-power laser welding process, it is hard to detect weld penetration conditions and back of weld shape directly. The width of back of weld was predicted by the sensing characteristics information of weld face and side surface. Visual sensors are used to capture images which contain weld characteristics information in laser welding process. Weld characteristics are extracted accurately through image segmentation, image hierarchical, pattern recognition and space image process. The extracted characteristics variation trends are corresponding to weld route change obviously. Bayes neural network that contains two hidden layers is established for back of weld width prediction of weldment, and the characteristics extracted from images are used as inputs. The compare results between prediction value and real value verified that the established Bayes neural network has good predictive ability, and better predictive stability even the weld is not ideal.
出处 《焊接学报》 EI CAS CSCD 北大核心 2018年第11期48-52,共5页 Transactions of The China Welding Institution
基金 国家自然科学基金资助项目(51675104) 广东省科技计划资助项目(2016A010102015) 广州市科技计划资助项目(201510010089)
关键词 激光焊接 背面焊缝 模式识别 贝叶斯神经网络 laser welding bottom weld pattern recognition Bayes neural network
  • 相关文献

参考文献2

二级参考文献14

  • 1Mei Lifang, Chen Genyu, Jin Xiangzhong, et al. Research on laser welding of high-strength galvanized automobile steel sheets [ J ]. Optics and Laser in Engineering, 2009 (47) : 1117 -1124.
  • 2Miranda R M, Lopes G, Quintino L, et al. Rapid prototyping with high power fiber lasers [ J ]. Materials & Design, 2008 (29) : 2072 - 2075.
  • 3Fabriee Bardin, Adolfo Cobo, Jose M Lopez-Hiuera. Optical techniques for real-time penetration monitoring for laser welding [ J ]. Applied Optics, 2005, 44(19) : 3869 -3876.
  • 4Kawahito Y, Mizutani M, Katayama S. High quality welding of stainless steel with 10 kW high power fibre laser[ J]. Science and Technology of Welding and Joining, 2009, 14 (4) : 288 - 294.
  • 5Zhao L, Tsukamoto S, Arakane G, et al. Influence of oxygen on weld geometry in fibre laser and fibre laser-GMA hybrid welding [J]. Science and Technology of Welding & Joining, 2011, 16 (2) : 166 - 173.
  • 6Tsukamoto S. High speed imaging technique part 2-High speed im- aging of power beam welding phenomena [ J ]. Science and Tech- nology of Welding and Joining, 2011, 16( 1 ) : 44 -55.
  • 7Matsunawa A. Problems and solutions in deep penetration laser welding[ J ]. Science and Technology of Welding and Joining, 2001 , 6(6) : 351 -354.
  • 8刘明涛,高向东,陈建辉,谢子方.基于数学形态学的熔池图像处理[J].焊接,2008(5):29-32. 被引量:11
  • 9李恩科,刘上乾,麻彦轩,殷世民.一种新的运动目标自适应图像分割算法[J].西安电子科技大学学报,2008,35(3):490-494. 被引量:8
  • 10崔丽,贺定勇,李晓延,蒋建敏,王智慧.焊接方向对光纤激光-MIG复合焊接钛合金焊缝成形的影响[J].中国激光,2011,38(1):62-69. 被引量:27

共引文献28

同被引文献87

引证文献12

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部