期刊文献+

Stress analysis of the TMSR graphite component under irradiation conditions 被引量:2

Stress analysis of the TMSR graphite component under irradiation conditions
下载PDF
导出
摘要 TMSR uses nuclear graphite as a neutron moderator, a reflector, and the structural material, and utilizes molten salt as a coolant. When running normally, the graphite components are immersed in the molten salt.Thus, the nuclear graphite comes into direct contact with the molten salt, which infiltrates the open pores of the nuclear graphite. This infiltration may influence the stress analysis of the graphite component. In this study, a User Material subroutine was used to analyze the stress distribution of the graphite component, both with and without molten salt infiltration. Many influence factors were taken into consideration, such as the dose gradient, the shape of the permeation zone, and the permeation area. The results show that the dose gradient, shape, and area of the permeation zone all significantly influence the stress distribution. Furthermore, the results of the stress analysis indicate that for a regular graphite component with a square cross section, the peak maximum principal stress value occurs at the center of the cross section, and the symmetry of the maximum principal stress distributions was modified by quarter circle and half ellipse permeation zones. TMSR uses nuclear graphite as a neutron moderator, a reflector, and the structural material, and utilizes molten salt as a coolant. When running normally, the graphite components are immersed in the molten salt. Thus, the nuclear graphite comes into direct contact with the molten salt, which infiltrates the open pores of the nuclear graphite. This infiltration may influence the stress analysis of the graphite component. In this study, a User Material subroutine was used to analyze the stress distribution of the graphite component, both with and without molten salt infiltration. Many influence factors were taken into consideration, such as the dose gradient, the shape of the permeation zone, and the permeation area. The results show that the dose gradient, shape, and area of the permeation zone all significantly influence the stress distribution. Furthermore, the results of the stress analysis indicate that for a regular graphite component with a square cross section, the peak maximum principal stress value occurs at the center of the cross section, and the symmetry of the maximum principal stress distributions was modified by quarter circle and half ellipse permeation zones.
出处 《Nuclear Science and Techniques》 SCIE CAS CSCD 2018年第12期21-29,共9页 核技术(英文)
基金 supported by the ‘‘Hundred Talent Program’’ of the Chinese Academy of Sciences,the Ministry of Human Resources and Social Security(No.Y419016031) the Strategic Priority Research Program of Chinese Academy of Science(No.XDA02040100)
关键词 石墨 部件 压力分析 直接接触 影响因素 压力分布 熔融 浸透 Nuclear graphite Stress analysis Irradiation Permeation zone
  • 相关文献

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部