期刊文献+

求解对称非线性方程组的近似PRP型共轭梯度法的收敛速度分析 被引量:1

An Analysis of Convergence Rate of Approximate PRP Conjugate Gradient Method for Solving Symmetric Nonlinear Equations
下载PDF
导出
摘要 无导数共轭梯度法是求解对称非线性方程组最有效的数值算法之一,针对近似PRP型无导数共轭梯度法的收敛速度问题,通过充分利用非线性方程组的对称结构,在适当的假设条件下,证明了该算法具有R-线性收敛速度。 The non-derivative conjugate gradient method is one of the most effective numerical algorithms for solving symmetric nonlinear equations. This study mainly examines the convergence rate of approximate PRP-typed non-derivative conjugate gradient method. By sufficiently utilizing the symmetric structure of the nonlinear equations, it has been proved that the algorithm has R-linear convergence rate under suitable assumptions.
作者 沈冬梅 王国威 胡中波 Shen Dongmei;Wang Guowei;Hu Zhongbo(School of Basic Education,Nan Chang institute of Science & Technology,Nanchangy Jiangxi 330108,China;School of Information and Mathematics,Yangtze Universityt Jingzhou,Hubei 434023,China)
出处 《湖北工程学院学报》 2018年第6期62-66,共5页 Journal of Hubei Engineering University
基金 江西省教育厅科学技术研究项目(GJJ161227) 南昌工学院校级科技计划项目(GJKJ-16-02)
关键词 对称非线性方程组 无导数算法 近似PRP型共轭梯度法 收敛速度 symmetric nonlinear equations derivative-free method approximate PRP conjugate gradient method convergence rate
  • 相关文献

参考文献1

二级参考文献10

  • 1LI Dong-hui, FUKUSHIMA M. A Globally and Superlinearly Convergent Gauss Newton Base BFGS Method for Sym- metric Nonlinear Equations [J]. SIAM Journal on Numerical Analysis, 1999, 37 (1): 152-172.
  • 2LI Dong-hui, FUKUSHIMA M. A Derivative Free Line Search and Global Convergence of Broyden lake Method for Nonlinear Equations [J]. Optimization Methods and Software, 2000, 13(3): 181-201.
  • 3ZHANG Ji wei, LI Dong-hui. A Norm Descent BFGS Method for Solving KKT Systems of Symmetric Variational Ine quality Problems [J]. Optimization Methods and Software, 2007, 22(2) : 237-252.
  • 4GU Guang-ze, LI Dong-hui, QI Li-qun, et ai. Descent Directions of Quasi Newton Methods for Symmetric Nonlinear E quations [J]. SIAM Journal on Numerical Analysis, 2003, 40(5):1763-1774.
  • 5LI Dong-hui, WANG Xiao lin. A Modified Fletcher-Reeves Type Derivative Free Method for Symmetric Nonlinear Equa tions [J]. Numerical Algebra, Control and Optimization, 2011, 1(1): 71-82.
  • 6ZHANG Li, ZHOU Wei jun, LI Dong hui. Global Convergence of a Modified Fletcher Reeves Conjugate Gradient Meth odwith Armijo-Type Line Search [J]. Numerishe Mathematik, 2006, 104(4): 561-572.
  • 7ZHANG Li, ZHOU Wei jun, LI Dong-hui. A Descent Modified Polak-Ribiere Polyak Conjugate Gradient Method and Its Global Convergence [J]. IMA Journal of Numerical Analysis, 2006, 26(4): 629-640.
  • 8POLYAK B T. The Conjugate Gradient Method in Extreme Problems [J]. USSR Comp Math And Math Phys, 1969, 9(4): 94-112.
  • 9BELLAVIA S, MORINI B. A Globally Convergent Newton GMRES Subspace Method for Systems of Nonlinear Equa- tions [J]. SIAM Journal on Scientific Computing, 2001, 23(3): 940-960.
  • 10王开荣,曹伟.两类Armijo-type线搜索下的PRP新算法[J].西南大学学报(自然科学版),2010,32(7):13-17. 被引量:3

共引文献3

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部