摘要
无导数共轭梯度法是求解对称非线性方程组最有效的数值算法之一,针对近似PRP型无导数共轭梯度法的收敛速度问题,通过充分利用非线性方程组的对称结构,在适当的假设条件下,证明了该算法具有R-线性收敛速度。
The non-derivative conjugate gradient method is one of the most effective numerical algorithms for solving symmetric nonlinear equations. This study mainly examines the convergence rate of approximate PRP-typed non-derivative conjugate gradient method. By sufficiently utilizing the symmetric structure of the nonlinear equations, it has been proved that the algorithm has R-linear convergence rate under suitable assumptions.
作者
沈冬梅
王国威
胡中波
Shen Dongmei;Wang Guowei;Hu Zhongbo(School of Basic Education,Nan Chang institute of Science & Technology,Nanchangy Jiangxi 330108,China;School of Information and Mathematics,Yangtze Universityt Jingzhou,Hubei 434023,China)
出处
《湖北工程学院学报》
2018年第6期62-66,共5页
Journal of Hubei Engineering University
基金
江西省教育厅科学技术研究项目(GJJ161227)
南昌工学院校级科技计划项目(GJKJ-16-02)
关键词
对称非线性方程组
无导数算法
近似PRP型共轭梯度法
收敛速度
symmetric nonlinear equations
derivative-free method
approximate PRP conjugate gradient method
convergence rate