期刊文献+

一种新型电动汽车无线充电系统磁耦合机构 被引量:10

A Novel Magnetic Coupling Mechanism for Wireless Charging System of Electric Vehicle
下载PDF
导出
摘要 电动汽车无线充电系统中,能量拾取端与发射端的横、纵向偏移问题导致了传输效率降低和传输功率不稳定。为此,通过对常用线圈绕线方式以及磁芯结构的优化,设计了一种"分组串绕线圈+凹凸磁芯结构"的复合型磁耦合机构。阐述了该复合型耦合机构的设计过程,给出了参数设计方法,并基于COMSOL软件对其磁场分布特性及横、纵向偏移特性进行了有限元仿真计算及性能分析,分析结果表明该耦合机构具有较好的抗偏移特性。 In the wireless charging system of the electric vehicle, problems of vertical and longitudinal offset of energy pick- up terminal and transmitting terminal may cause reduction of transmission efficiency and unstable transmission power. Therefore, it is required to optimize common winding mode of the coil and magnetic core structure, and this paper designs a kind of composite magnetic coupling mechanism with the structure of group-sequential coil and concave-convex core. It states design process of this kind of composite mechanism and provides design method for relevant parameters. On the basis of COMSOL software, it makes finite element simulation calculation and performance analysis on characteristics of magnetic field distribution and vertical and longitudinal offset. The result indicates this coupling mechanism has better anti- offset characteristic.
作者 吴新刚 田阳 刘羽 谭若兮 唐春森 WU Xingang;TIAN Yang;LIU Yu;TAN Ruox?;TANG Chunsen(Beijing Smart-Chip Microelectronics Technology Co.,Ltd.,Beijing 102200,China;State Grid Zhejiang Electric Pow er Co.,Ltd.,Ningbo Power Supply Company,Ningbo,Zhejiang 315000,China;College of Automation,Chongqing U niversity,Chongqing 400044,China)
出处 《广东电力》 2018年第11期72-78,共7页 Guangdong Electric Power
基金 国家自然科学基金项目(51777022) 国网浙江省电力有限公司科技项目(5211NB16000B)
关键词 电动汽车 无线充电 偏移 分组串绕线圈 凹凸磁芯 electric vehicle wireless charging offset group-sequential coil concave-convex core
  • 相关文献

参考文献8

二级参考文献112

  • 1王成山,郑海峰,谢莹华,陈恺.计及分布式发电的配电系统随机潮流计算[J].电力系统自动化,2005,29(24):39-44. 被引量:288
  • 2卢艳霞,张秀敏,蒲孝文.电动汽车充电站谐波分析[J].电力系统及其自动化学报,2006,18(3):51-54. 被引量:62
  • 3赵修科.实用电源技术手册:磁性元器件分册[M].沈阳:辽宁科学技术出版社,2002.
  • 4Hayes J G, Egan M G, Murphy J M D, et al. Wide-load-range resonant converter supplying the SAE J-1773 electric vehicle inductive charging interface[J] . IEEE Trans. on Industrial Application, 1999, 35(4): 884-895.
  • 5Iwawaki K, Watada M, Takatani S, et al. The design of core-type transcutaneous energy transmission systems for arti cial heart[C]// 30th Annual Conference of the IEEE Industrial Electronics Society. Busan, Korea: IEEE, 2004: 948-952.
  • 6Wang Guoxing, Liu Wentai. Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants[J]. IEEE Trans. on Circuits and Systems, 2005, 52(10): 2109-2117.
  • 7Lim H G, Yoon Y H, Lee C W, et al. Implementation of a transcutaneous charger for fully implantable middle ear hearing device[C]//27th Annual Conference of Engineering in Medicine and Biology. Shanghai, China: IEEE, 2005: 6813-6816.
  • 8SallainJestis, Villa J L, LlombartA, etal. Optimal designoflCPT systems applied to electric vehicle battery charge[J]. IEEE Trans. on Industrial Electronics, 2009, 56(6): 2140-2149.
  • 9SAE. SAE J-1773, Electric vehicle inductive coupling recommended practice[R]. Switzerland: Society ofAutomotiveEngineers, 1999.
  • 10Joung G B, Cho B H. An energy transmission system foran articial heart using leakage inductance compensation of transcutaneous transformer[J]. IEEE Trans. on Power Electronics, 1998, 13(6): 1013-1022.

共引文献187

同被引文献107

引证文献10

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部