期刊文献+

基于有序FP树和二维列表的频繁模式挖掘算法 被引量:3

Study on frequent patterns mining based on sorted FP-Tree and two-dimensional table
下载PDF
导出
摘要 关联法是数据挖掘算法中一种重要的技术,FP-Growth算法是当前最有效的关联法则挖掘算法,主要针对传统的FP-Growth算法当前的一些不足进行改进,提出了一种新的挖掘算法OFP树挖掘算法.一是采用了有序FP树代替传统的FP树,减少存储空间的使用,二是采用二维列表记录项的频繁度,省去为寻找第一次条件模式基而遍历FP树的过程.实验结果表明该算法优于传统FPGrowth算法. Association rules algorithm is an important technology in data mining algorithms.And FP- Growth algorithm is the most effective association rule mining algorithm. This pa-per presented an algorithm, OFP mine, which mainly aims at the improvement of the tradition-al FP - Growth algorithm . One was using a sorted FP tree instead of a traditional FP tree toreduce the practicality of storage space. Second was using two-dimensional table entries torecord items frequently, which for saving the process to search for the first conditional patternbase by traversing the FP tree. Finally, the experimental evaluation showed that the algorithmwas superior to FP - Growth algorithm.
作者 岳帅 尹绍宏 YUE Shuai;YIN Shao-hong(School of Computer Science,Tianjin Polytechnic University,Tianjin 300387,china)
出处 《哈尔滨商业大学学报(自然科学版)》 CAS 2018年第6期692-697,共6页 Journal of Harbin University of Commerce:Natural Sciences Edition
关键词 数据挖掘 关联法则 有序FP树 二维列表 FP—Growth OFP树 优化算法 data mining association rules ordered FP tree two-dimensional table FP-Growth OFP tree optimization
  • 相关文献

参考文献10

二级参考文献84

  • 1牛小飞,石冰,卢军,吴科.挖掘关联规则的高效ABM算法[J].计算机工程,2004,30(11):118-120. 被引量:16
  • 2吉根林,杨明,宋余庆,孙志挥.最大频繁项目集的快速更新[J].计算机学报,2005,28(1):128-135. 被引量:47
  • 3BABCOCK B,BABU S,DATAR M, et al. Models and issues in data stream systems [ C ]//Proc of the 21 st ACM SIGMOD-SIGART Sympo- sium on Principles of Database System. New York:ACM Press,2002: 1-16.
  • 4GAROFALAKIS M, GEHRKE J. Querying and mining data streams: you only get one look a tutorial[ C]//Proc of ACM SIGMOD Interna- tional Conference on Management of Data. New York: ACM Press, 2002:635.
  • 5LEE D, LEE W. Finding maximal frequent itemsets over online data streams adaptively [ C ]//Proc of the 5th IEEE International Confe- rence on Daia Mining. Washington DC : IEEE Computer Society,2005 : 266 - 273.
  • 6LI Hua-fu, LEE S, SHAN M. Online mining maximal frequent itemsets over data streams[ C]//Proc of the 15th International Workshops on Research Issues in Data Engineering: Stream Data Mining and Appli- cations. 2005 : 11 - 18.
  • 7MAO Guo-jun, WU Xin-dong, ZHU Xing-quan, et al. Mining maximal frequent itemsets from data streams[ J]. Journal of Information Sci- ence,2007,33(3 ) :251-262.
  • 8GIANNELLA C, HAN Jia-wei, PEI Jian, et al. Mining frequent pat- terns in data streams at multiple time granularities [ M ]//Next Gene- ration Data Mining. Cambridge : MIT Press ,2005 : 191 - 212.
  • 9BORGELT C. Keeping things simple:finding frequent itemsets by re- cursive elimination [ C ]//Proc of the 1 st International Workshop on Open Source Data Mining. New York :ACM Press,2005:66-70.
  • 10AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules[ C]//Proc of the 20th International Conference on Very Large Databases. San Francisco: Morgan Kaufmann Publishers, 1994:487- 499.

共引文献302

同被引文献22

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部