摘要
提出了一种搜寻混沌系统不稳定周期解的新方法,首先应用泰勒展开将微分系统离散化,通过离散系统构造一个目标函数,并使其极小值点(0值点)对应该系统的不稳定周期解,再应用伪周期搜寻算法得到最优化算法的初始值,最后利用最速下降法对结果进行优化,得到系统的周期解。应用本文方法搜寻出Lorenz系统的多个不稳定周期点,包括具有朴素周期、超大周期以及倍周期的周期解,表明了本文方法的有效性和实用性。
A new method of searching for unstable periodic solutions in a chaotic system is presented in this paper.The Taylor expansion is applied to transform a differential dynamical system to a discrete dynamical system. A target function is then built such that its minimum(0 value) corresponds to an unstable periodic orbit for the differential system. A searching method for pseudo-periodic orbits is given to determine the initial value for an optimization method. The steepest descent method is then employed to find the minimum of the target function. This method is applied to the famous Lorenz system and the unstable periodic orbits obtained include a simple cycle,a super cycle and a double cycle. The results show that this method is effective and practical.
作者
窦孝刚
许鹏程
李威
张世东
DOU XiaoGang;XU PengCheng;LI Wei;ZHANG ShiDong(Faculty of Science,Beijing University of Chemical Technology,Beijing 100029;Institute of Applied Mathematics,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190;Beijing 101 Middle School,Beijing 100091,China)
出处
《北京化工大学学报(自然科学版)》
CAS
CSCD
北大核心
2018年第6期111-115,共5页
Journal of Beijing University of Chemical Technology(Natural Science Edition)
关键词
混沌
周期解
混沌系统
最速下降法
chaos
periodic solution
chaotic system
steepest descent method