期刊文献+

基于最大间隔的半监督图像搜索重排序方法

A Max Margin Based Semi-Supervised Reranking Method
原文传递
导出
摘要 提出一种基于最大间隔原理的半监督图像搜索重排序学习算法。所提算法在最大间隔原理框架下,首先利用超图正则化保持标注及未标注样本在原始空间中的局部近邻关系,增强算法的稳健性;其次,利用少量的标注样本构造优先关系对,将样本间先验的相关性等级信息引入目标函数中以更好地指导重排序模型的学习。在公开数据集MSRA-MM1.0上的实验结果表明所提方法能更好地将符合用户需求的结果靠前优先呈现给用户,提高搜索的准确性。 We propose a max margin based semi-supervised reranking method for multimedia information retrieval. We use hypergraph regularization to preserve the neighborhood of the sample in the original space and introduce the labeled and unlabeled sample information to construct the objective function, so as to achieve full and efficient use of data information for ranking. By using a small amount of annotation samples to construct the priority relationship pairs, the priority information between samples is introduced into the objective function to construct a ranking learning model. This method can show users in priority the results that meet their demand better, and improve the retrieval accuracy. The experimental results on MSRA-MM 1. 0 dataset suggest the proposed method provides superior performance compared with several state-of-the-art methods.
作者 张桐喆 苏育挺 郭洪斌 Zhang Tongzhe;Su Yuting;Guo Hongbin(School of Electronic Information Engineering,Tianjin University,Tianjin 300072,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2018年第11期140-146,共7页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61271069)
关键词 图像处理 图像搜索 视觉搜索重排 超图正则化 半监督排序 image processing image search visual search reranking hypergraph regularization semi-supervised ranking
  • 相关文献

参考文献8

二级参考文献63

共引文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部