期刊文献+

改进的连续型最大流算法脑肿瘤磁核共振成像三维分割 被引量:13

Three-Dimensional Segmentation of Brain Tumors in Magnetic Resonance Imaging Based on Improved Continuous Max-Flow
原文传递
导出
摘要 针对脑肿瘤磁核共振成像(MRI)中噪声、低对比度、脑肿瘤边界模糊等原因造成脑肿瘤分割不足的问题,提出一种改进的连续型最大流算法脑肿瘤MRI三维分割方法。针对Flair、T1C和T2三种模态MRI图像使用中值滤波和快速模糊C均值聚类进行预处理得到预处理图像;按照大量实验统计确定的融合比例5:1:4(Flair、T1C和T2三种模态),对各预处理图像进行线性融合得到三维融合图像;采用快速模糊C均值算法对三维融合图像进行聚类得到三维欠分割图像;使用本文提出的算法对三维欠分割图像进行精准分割,即通过分析三维欠分割图像的结构特征和统计特征,提取参数实现改进的连续型最大流算法,去除散点后得到最终分割结果。实验表明,相对金标准的相似系数为0.90,正确率为0.94,召回率为0.86。使用本文提出算法进行脑肿瘤MRI三维分割能够自动、准确地分割出三维脑肿瘤区域,可以满足医学临床需要。 In order to solve the problem of insufficient segmentation of brain tumors in magnetic resonance imaging (MRI) caused by noise, poor contrast, and diffused boundaries of tumors, a three-dimensional (3D) segmentation algorithm for brain tumor MRI images based on the improved continuous max-flow is proposed in this paper. Firstly, three types of MIR images, Flair, T1C and T2, are pre-processed with median filtering and fast fuzzy C means clustering. Then, the pre-processed images are linearly fused in the ratio of 5:1:4 (Flair, TIC, and T2) which is statistically observed from a large amount of experiments. Next, the 3D fused image is clustered by the fast fuzzy C-means algorithm to obtain the 3D under-segmented image. Finally, the proposed improved continuous maxflow algorithm acts on the 3D under-segmented image to obtain the final segmentation result with scattering points removed according to the analysis of the structural features and statistical characteristics of the 3D under-segmented image. The experimental results show that the average Dice coefficient, precision, and recall of the proposed method relative to the gold standard is up to 0.90, 0.94, and 0.86, respectively. The proposed algorithm can realize the 3D segmentation of the target regions precisely and automatically to meet the clinical medicine requirement.
作者 任璐 李锵 关欣 马杰 Ren Lu;Li Qianga;Guan Xin;Ma Jie(School ofMicroelectronics,Tianjin University,Tianjin 300072,China;Tianjin Weishen Technology Company Limited,Tianjin 300384,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2018年第11期215-223,共9页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61471263) 天津市自然科学基金(16JCZDJC31100)
关键词 图像处理 脑肿瘤 三维图像分割 磁核共振成像 线性融合 改进的连续型最大流算法 image processing brain tumor three-dimensional image segmentation magnetic resonance imaging linear fusion improved continuous max-flow
  • 相关文献

参考文献7

二级参考文献42

  • 1张玲,郭磊民,何伟,陈丽敏.一种基于最大类间方差和区域生长的图像分割法[J].信息与电子工程,2005,3(2):91-93. 被引量:27
  • 2A Chakraborty, L H Staib, J S Duncan. Deformable boundary finding in medical images by integrating gradient and region information [ J]. IEEE Trans. On Medical Imaging, 1996, 15 (6) :859 - 870.
  • 3C S Poon, M Brain. Image segmentation by a deformable contour model incorporating region analysis [ J ]. Physics in Medicine and Biology, 1997,42:1833- 1841.
  • 4N Paragios, R Deriche. Unifying boundary and region-based information for geodesic active tracking [A]. IEEE Conference on Computer Vision Pattern Recognition [C]. Colorado: IEEE Computer Society Press, 1999.300 - 305.
  • 5V Caselles, R Kimmel, G Sapiro. Geodesic active contours [J]. Journal of Computer Vision, 1997,22(1) :61-79.
  • 6J S Suri. White matter/gray matter boundary segmentation using geometric snakes: a fuzzy deformable model [ A] .Proceeding of the Second International Conference on Advances in Pattera Recognition [C]. London: Springer-Verlag, 2001.331 - 338.
  • 7J S Suri, K Liu,S Singh, S N Laxminarayan, X Zeng,L Reden. Shape recovery algorithms using level sets in 2-d/3-d medical imagery: a state-of-the-art review [J]. IEEE Trans On Information Technology in Biomedicine, 2002,6(1) :8- 28.
  • 8S Osher, R Fedldw. Level Set Methods and Dynamic Implicit Surfaces [M]. New York: Springer-Verlag New York Inc., 2003.
  • 9C Bailland, C Barillot. Robust 3D segmentation of anatomical structures with level sets [A]. Medical Image Computing and Computer-Assisted Intervention[C]. Heidelberg: Springer Berlin, 2000,1935: 236 - 245.
  • 10MCBIC/MNI. BrainWeb: 20 anatomical models of 20 normal brains [DB/O] http://www, bic. toni. mcgill, ca/brainweb / anatomic _ normal_ 20. html, 2006-06-12/2007-03-10.

共引文献134

同被引文献44

引证文献13

二级引证文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部