期刊文献+

飞秒时间分辨质谱和光电子影像对分子激发态动力学的研究 被引量:2

Excited state dynamics of molecules studied with femtosecond time-resolved mass spectrometry and photoelectron imaging
下载PDF
导出
摘要 分子量子态的研究,特别是分子激发态演化过程的研究不仅可以了解分子量子态的基本特性和量子态之间的相互作用,而且可以了解化学反应过程和反应通道间的相互作用.飞秒时间分辨质谱和光电子影像是将飞秒抽运-探测分别与飞行时间质谱和光电子影像相结合的超快谱学方法,为实现分子内部量子态探测,研究分子量子态相互作用及超快动力学过程提供了强有力的工具,可以在飞秒时间尺度下研究单分子反应过程中的光物理或光化学机理.本文详细介绍了飞秒时间分辨质谱和光电子影像的技术原理,并结合本课题组的工作,展示了这两种方法在量子态探测及相互作用研究领域,特别是激发态电子退相、波包演化、能量转移、分子光解动力学以及分子激发态结构动力学研究中的广泛应用.最后,对该技术的发展前景以及进一步的研究工作和方向进行了展望. Study of quantum states of molecules, especially the evolution of excited states can help to understand their basic features and the interactions among different states. Furthermore, the information about the chemical reaction process and the interactions among several reaction channels can be obtained. Femtosecond time-resolved mass spectrometry(TRMS) and time-resolved photoelectron imaging(TRPEI), which combine pump-probe technique with time of flight mass spectrometry and photoelectron imaging, are powerful tools for detecting the molecular quantum state and for studying the molecular quantum state interaction and molecular ultrafast dynamics. With these methods, the photochemistry and photophysics mechanism of isolated molecule reaction process can be investigated on a femtosecond time scale. The principles of TRMS and TRPEI are introduced here in detail. On the basis of substantial research achievements in our group, the applications of TRMS and TRPEI are presented in the study of ultrafast internal conversion and intersystem crossing, wavepacket evolution dynamics at excited states of polyatomic molecules, energy transfer process of polyatomic molecules, ultrafast photodissociation dynamics and structural evolution dynamics of molecular excited states. In the study of ultrafast internal conversion and intersystem crossing, the methyl substituted benzene derivatives and benzene halides are discussed as typical molecular systems. In the study of wavepacket evolution dynamics at excited states of polyatomic molecules, the real-time visualization of the dynamic evolution of CS24 d and6 s Rydberg wave packet components, the vibrational wave packet dynamics in electronically excited pyrimidine, the rotational wave packet revivals and field-free alignment in excited o-dichlorobenzene are reported. In order to discuss the energy transfer process of polyatomic molecules, the intramolecular vibrational energy redisctribution between different vibrational states in p-difluorobenzene in the S1 low-energy regime and the intramolecular energy transfer between different electronic states in excited cyclopentanone are presented. For the study of ultrafast photodissociation dynamics,the dissociation constants and dynamics of the A band and even higher Rydberg states are investigated for the iodine alkanes and iodine cycloalkanes. Structural evolution dynamics of molecular excited states is the main focus of our recent research. The structural evolution dynamics can be extracted from the coherent superposition preparation of quantum states and the observation of quantum beat phenomenon, by taking 2, 4-difluorophenol and o-fluorophenol as examples.Time-dependent photoelectron peaks originating from the planar and nonplanar geometries in the first excited state in2, 4-difluorophenol exhibit the clear beats with similar periodicities but a phase shift of π rad, offering an unambiguous picture of the oscillating nuclear motion between the planar geometry and the nonplanar minimum. Also, the structural evolution dynamics in o-fluorophenol via the butterfly vibration between planar geometry and nonplanar minimum is mapped directly. Finally, the potential developments and further possible research work and future directions of these techniques and researches are prospected.
作者 王艳梅 唐颖 张嵩 龙金友 张冰 Wang Yan-Mei;Tang Ying;Zhang Song;Long Jin-You;Zhang Bing(State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences,Wuhan 430071,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2018年第22期134-149,共16页 Acta Physica Sinica
基金 国家自然科学基金(批准号:21573279,11574351,11674355,21303255,91121006,21273274,21773299) 国家重点基础研究发展计划(批准号:2013CB922200)资助的课题
关键词 飞秒时间分辨 质谱 光电子影像 激发态动力学 femtosecond time-resolved mass spectrometry photoelectron imaging dynamics in excited states
  • 相关文献

同被引文献12

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部