摘要
【目的】双曲型方程是一类重要的偏微分方程,由于寻求问题本身的精确解比较困难,数值方法来求解此类方程有极具深远的意义和实际应用价值。【方法】首先对于一维的线性双曲型方程,在空间上采用Kreiss提出的四阶紧致差分公式进行逼近,时间上采用Taylor级数展开及截断误差修正的方法,推导出一个隐式的紧致差分格式。【结果】该格式在时间和空间上都有四阶精度,截断误差为O(τ4+h4)。【结论】采用Fourier方法分析了该格式的稳定性。数值实验证明提出的格式具有较好的稳定性和精确性。
[Purposes]Hyperbolic equations are an important class of partial differential equations.Because it is difficult to find the exact solution of the problem itself,use numerical methods for solving such equations.[Methods]Firstly,for the one dimensional linear hyperbolic equation,a high-order compact difference scheme is developed by using the fourth-order compact difference formula proposed by Kreiss in space direction and the Taylor series expansion and the truncation error correction method in time direction.[Findings]The truncation error of this method is O(τ4+h4).[Conclusions]Its stability criterion is determined by using Fourier analysis method.The numerical experiments are conducted and numerical results validate the stability and accuracy of the present scheme.
作者
韩俊茹
葛永斌
HAN Junru;GE Yongbin(School of Mathematics and Statistics,Ningxia University,Yinchuan 750021,China)
出处
《重庆师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2018年第6期64-69,共6页
Journal of Chongqing Normal University:Natural Science
基金
国家自然科学基金(No.11772165)
宁夏自然科学基金(No.2018AAC02003)
关键词
线性双曲型方程
PADÉ逼近
紧致格式
有限差分法
linear hyperbolic equation
padéapproximation
compactscheme
finite difference method