期刊文献+

知识群落演化与知识传递模式研究 被引量:2

Research on the Evolution of Knowledge Communities and Knowledge Transmitting Pattern
原文传递
导出
摘要 探索领域知识网络中知识群落及其演化模式,对于掌握领域知识发展过程中的知识交叉融合以及知识继承具有重要意义。基于标签邻接关系构建时间序列领域知识网络。通过社群发现算法识别领域知识网络中的知识群落。基于群落数量、群落规模、变异系数等指标,对知识群落生长路径和演化模式进行跟踪与分析。研究结果表明,大规模知识群落随着领域知识的发展逐渐涌现;小规模知识群落在演化过程中与其他知识交叉融合;大规模知识群落倾向于集中传递群落中的主要知识内容。 Exploring the knowledge community and its evolutionary pattern in the domain knowledge network is of great significance for mastering knowledge cross-convergence and knowledge inheritance in the process of domain knowledge development. Time series domain knowledge networks are constructed based on tags adjacency relationship. The community discovery algorithm is used to identify the knowledge communities in the domain knowledge networks. Based on the number of communities, the size of the communities, the variation coefficients, and other indicators, the growth path and evolution pattern of the knowledge community are tracked and analyzed. The research results show that large-scale knowledge communities gradually emerge with the development of domain knowledge; small-scale knowledge communities are intertwined with other knowledge in the evolution process; and large-scale knowledge communities tend to intensively deliver main knowledge content in the communities.
出处 《图书馆学研究》 CSSCI 北大核心 2018年第21期76-85,共10页 Research on Library Science
基金 国家自然科学基金面上项目"基于网络结构演化的Folksonomy模式中社群知识组织与知识涌现研究"(项目编号:71473035)的研究成果之一
关键词 知识网络 知识群落 知识传递 群落演化 knowledge network knowledge community knowledge transmitting community evolution
  • 相关文献

参考文献6

二级参考文献105

  • 1刘则渊,尹丽春.国际科学学主题共词网络的可视化研究[J].情报学报,2006,25(5):634-640. 被引量:99
  • 2Tan A H. Text mining: The state of the art and the challenges. Proceedings of the PAKDD 1999 Workshop on Knowledge Discovery from Advanced Databases [ C ]. 1999 : 65-70.
  • 3Wang J, Xu C, Li G, et al. Understanding research field evolving and trend with dynamic Bayesian networks[ J]. Advances in Knowledge Discovery and Data Mining, 2007(4426) : 320-331.
  • 4Moerchen F, Fradkin D, Dejori M, et al. Emerging trend prediction in biomedical literature: AMIA Annual Symposium Proceedings[ C ]. 2008 : 485-489.
  • 5Schiebel E, Hfirlesberger M, Roche I, et al. An advanced diffusion model to identify emergent research issues: the case of optoelectronic devices [ J ]. Scientometrics ,2010, 83 (3) : 765-781.
  • 6Tu Y N, Seng J L. Indices of novelty for emerging topic detection [ J ]. Information Processing & Management, 2012, 48(2) : 303-325.
  • 7Leydesdorff L, Rafols I. A global map of science based on the ISI subject categories[ J]. Journal of the American Society for Information Science and Technology, 2008,60 (2) : 348-362.
  • 8Boyaek K W,Klavans R,B6mer K. Mapping the backbone of science [ J ]. Scientometrics, 2005,64 ( 3 ) : 351-374.
  • 9BSrner K, Chen C, Boyack K W. Visualizing knowledge domains [ J]. Annual review of information science and technology, 2005, 37( 1 ) : 179-255.
  • 10Chen C M. CiteSpace II:Detecting and visualizing emerging trends and transient patterns in scientific literature [ J]. Journal of the American Society for Information Science and Technology, 2005, 57 (3) : 359-377.

共引文献117

同被引文献10

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部