期刊文献+

Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber 被引量:3

Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber
下载PDF
导出
摘要 A two-dimensional mathematical model was developed to investigate the effects of dielectric barrier discharge (DBD) plasma on CH4-air mixtures combustion at atmospheric pressure. Considering the physical and chemical processes of plasma-assisted combustion (PAC), plasma discharge, heat transfer and turbulent were simultaneously coupled into simulation of PAC. This coupling model consists of DBD kinetic model and methane combustion model. By comparing simulations and the original reference's results, a high-accuracy of this model was validated. In addition, the effects of PAC actuation parameters on combustion characteristics were studied. Numerical simulations show that with an inlet airflow velocity of 10 m s-1, a CH4-air mixtures' equivalence ratio of 0.5, an applied voltage of 10 kV, a frequency of 1200 kHz, compared to conventional combustion (CC), the highest flame temperature rises by 32 K; outlet temperature distribution coefficient drops by 2.3%; the maximum net reaction rate of CH4 and H20 increase by 11.22% and 12.80% respectively; the maximum CO emission index decreases by 14.61%; the mixing region turbulence mixing time reduces by 89 ms. A two-dimensional mathematical model was developed to investigate the effects of dielectric barrier discharge (DBD) plasma on CH4-air mixtures combustion at atmospheric pressure. Considering the physical and chemical processes of plasma-assisted combustion (PAC), plasma discharge, heat transfer and turbulent were simultaneously coupled into simulation of PAC. This coupling model consists of DBD kinetic model and methane combustion model. By comparing simulations and the original reference's results, a high-accuracy of this model was validated. In addition, the effects of PAC actuation parameters on combustion characteristics were studied. Numerical simulations show that with an inlet airflow velocity of 10 m s-1, a CH4-air mixtures' equivalence ratio of 0.5, an applied voltage of 10 kV, a frequency of 1200 kHz, compared to conventional combustion (CC), the highest flame temperature rises by 32 K; outlet temperature distribution coefficient drops by 2.3%; the maximum net reaction rate of CH4 and H20 increase by 11.22% and 12.80% respectively; the maximum CO emission index decreases by 14.61%; the mixing region turbulence mixing time reduces by 89 ms.
作者 邓军 何立明 刘兴建 陈一 Jun DENG;Liming HE;Xingjian LIU;Yi CHEN(Science and Technology on Plasma Dynamics Laboratory,Air Force Engineering University,Xi'an 710038,People's Republic of China)
出处 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第12期75-85,共11页 等离子体科学和技术(英文版)
基金 supported by National Natural Science Foundation of China(No.51436008)
关键词 dielectric barrier discharge plasma-assisted combustion combustion chamber numerical simulation dielectric barrier discharge plasma-assisted combustion combustion chamber numerical simulation
  • 相关文献

同被引文献37

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部