摘要
采用脉冲电沉积方法在A3钢表面制备Ni-TiN纳米镀层,利用扫描电镜、电子分析天平、X射线光电子能谱分析仪等设备对Ni-TiN纳米镀层腐蚀行为进行研究,用BP神经网络模型预测Ni-TiN纳米镀层腐蚀失质量。结果表明:当脉冲频率为500 Hz、TiN粒子的质量浓度为8 g/L和电流密度为4 A/dm2时,Ni-TiN纳米镀层镍晶粒细小、结构精细、致密性较高、耐蚀性较好,镀层中元素Ti和Ni的原子数分数分别为20.1%和51.4%;BP神经网络预测Ni-TiN纳米镀层腐蚀失质量的相对误差较小,最大均方误差(MSE)仅为9.8%。
The Ni-TiN nanocrystalline coating was prepared on A3 steel surface by pulse electrodeposition. The corrosion behavior of Ni-TiN nanocrystalline coating was studied by means of scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). And BP neural network model was used to predict the weight loss of Ni-TiN nano coating. The results show that, when the pulse frequency is 8 g/L and the current density is 4 A/dm^2, the Ni-TiN nanocrystalline coating with fine grain, fine structure, high density and good corrosion resistance can be prepared. The atomic fraction of Ti and Ni in the coating are 20.1% and 51.4%, respectively. The relative error Of predicting the corrosion weight loss of Ni-TiN nanocrystalline coating by BP neural network is relatively small, and the maximum mean square error (MSE) is only 9.8%.
作者
许毅
XU Yi(Laiwu Vocational and Technical College,Laiwu 271100,China)
出处
《兵器材料科学与工程》
CAS
CSCD
北大核心
2018年第6期49-53,共5页
Ordnance Material Science and Engineering
基金
国家自然科学基金(51474072)