期刊文献+

关于Gray-Scott系统的分岔线的一个注解

下载PDF
导出
摘要 论文给出了Gray-Scott系统关于分岔线位置的一个定理和证明,结论对Gray-Scott系统鞍结点分岔线和霍普夫分岔线之间形成的封闭区域的存在性做出了证明,对之前的研究结果做了补充。
作者 李红燕
出处 《信息系统工程》 2018年第11期67-68,共2页
  • 相关文献

参考文献1

二级参考文献27

  • 1Muratov C B, Osipov V V. Static spike autosolutions in the Gray-Scott model. J Phys A, Math Gen, 2000,33:8893-8916
  • 2Nicolis G. Patterns of spatio-temporal organization in chemical and biochemical kinetics. SIAM-AMS Proc,1974, 8:33-58
  • 3Peng R, Wang M X. Positive steady-state solutions of the Noyes-Field model for Belousov-Zhabotinskii reaction. Nonlinear Anal, TMA, 2004, 56:451-464
  • 4Peng R, Wang M X. Pattern formation in the Brusselator system. J Math Anal Appl, 2005, 309:151-166
  • 5Wang M X. Non-constant positive steady-states of the Sel'kov model. J Differ Equations, 2003, 190:600-420
  • 6Wu J H, Wolkowicz G. A system of resource-based growth models with two resources in the unstirred chemostat. J Differ Equations, 2001, 172:300-332
  • 7Chen W Y, Peng R. Stationary patterns created by cross-diffusion for the competitor-competitor-mutualist model. J Math Anal Appl, 2004, 291:550-564
  • 8Du Y H, Lou Y. Qualitative behavior of positive solutions of a predator-prey model: effects of saturation. Proc Roy Soc Edinburgh A, 2001, 131:321-349
  • 9Lou Y, Martinez S, Ni W M. On 3 × 3 Lotka-Volterra competition systems with cross-diffusion. Discrete Cont Dyn S, 2000, 6:175-190
  • 10Lou Y, Ni W M. Diffusion, self-diffusion and cross-diffusion. J Differ Equations, 1996, 131:79-131

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部