期刊文献+

基于集成学习的中国P2P网络借贷信用风险预警模型的对比研究 被引量:7

Predicting Credit Risks of P2P Loans in China Based on Ensemble Learning Methods
原文传递
导出
摘要 【目的】结合实际的中国网贷数据,通过对不同流行集成方法的对比分析,探索合适中国网贷信用风险监测的集成方法,从而提高对中国网贷平台信用风险的监测效率。【方法】基于人人贷交易数据,从借款人的5个方面提取特征信息并运用随机森林算法进行特征筛选,基于此运用4种集成算法和5种基分类器,构建信用风险预警模型实现对比分析。【结果】实验结果表明, Rotation Forest的准确度最高为99.32%,误差率仅为1.71%。而且基于随机森林的特征选择过程能够提高相关模型的性能。【局限】实验数据集有待进一步扩充。【结论】Rotation Forest集成模型与识别风险的重要因素结合,可以显著提高信用风险预测效率。 [Objective] This paper examines several popular ensemble-learning methods with real-world data, aiming to find the most suitable way to monitor the P2P credit risks facing China. [Methods] We extracted the borrower's features from five aspects, and identified the most remarkable ones with Random Forest method. Then, we compared the prediction models based on four ensemble-learning methods and five base classifiers. [Results] We found that the Rotation Forest method had the highest accuracy rate of 99.32% and the lowest error rate of t.71%. Feature selection processing based on Random Forest could improve the performance of all related models significantly. [Limitations] The sample dataset needs to be expanded. [Conclusions] The proposed method could identify credit risks more effectively.
作者 操玮 李灿 贺婷婷 朱卫东 Cao Wei;Li Can;He Tingting;Zhu Weidong(School of Economics,Hefei University of Technology,Hefei 230601,China)
出处 《数据分析与知识发现》 CSSCI CSCD 北大核心 2018年第10期65-76,共12页 Data Analysis and Knowledge Discovery
基金 国家自然科学基金项目"基于多维证据理论的科学基金立项评估信息融合研究"(项目编号:71774047)的研究成果之一
关键词 集成学习 特征选择 P2P网络借贷 信用风险 Ensemble Learning Feature Select P2P Net Loan Credit Risks
  • 相关文献

参考文献6

二级参考文献65

  • 1董春曦,饶鲜,杨绍全,徐松涛.支持向量机参数选择方法研究[J].系统工程与电子技术,2004,26(8):1117-1120. 被引量:65
  • 2郑恩辉,李平,宋执环.代价敏感支持向量机[J].控制与决策,2006,21(4):473-476. 被引量:33
  • 3毛勇,周晓波,夏铮,尹征,孙优贤.特征选择算法研究综述[J].模式识别与人工智能,2007,20(2):211-218. 被引量:95
  • 4EdwardI Altman. Financial Ratios Discriminant Analysis and the Prediction of Corporate Bankruptcy [ J ]. Journal of Finance, 1968, 23 (4): 589 - 609.
  • 5E I Altman, R Haldeman, P Narayanan. ZETA Analysis: A New Model to Identify Bankruptcy Risk of Corporations [ J ]. Journal of Banking and Finance,1977, 1 : 29 -54.
  • 6Zhihua Zhou, Jianxin Wu Wei Tang. Ensembling Neural Networks: Many Could Be Better Than All [J]. Artificial Intelligence,2002, 137(1 -2) :239 -263.
  • 7Bart Bakker, Tom Heskes. Clustering Ensemble of Neural Network Model [ J ]. Neural Networks,2003,16 ( 2 ) :261 - 269.
  • 8Pau I J Fitzpartfick. A Comparison of Ratios of Successful Industrial Enterprises with Those of Failed Firms [ J ]. Certified Public Ac- count, 1932,10 (10) : 598 - 605.
  • 9Mark E Zmijewski. Methodological Issues Ralatod to the Estimation of Financial Distress Rediction Models [ J 1- Journal of Accounting Research, 1984(22) :59 -86.
  • 10M Odom, R Shard. A Neural Networks Model for Bankruptcy Predic- tion[ J]. Proceedings of the International Conference on Neural Net- work, 1990,2:163 - 168.

共引文献361

同被引文献88

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部