期刊文献+

一种改进的粒子群算法研究 被引量:1

Study on an Improved Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 为了克服粒子群算法易发生早熟收敛、后期迭代速度较慢、易陷入局部最优的缺点,提出了一种改进的粒子群算法。该算法采用非线性动态自适应的更新权重,进一步提高收敛速度;通过引入差分进化算法中的交叉算子,以提高算法的全局探索能力,利用差分进化算法的变异策略产生候选解,克服种群多样性的下降,以跳出局部最优。利用该算法对2个测试函数进行寻优,仿真结果表明,文章提出的算法是一种收敛速度快、收敛精度高的全局寻优算法。 In order to overcome the shortcomings in the particle swarm optimization (such as premature convergence, slower iteration and tendency to local optimum), an improved patti cle swarm optimization algorithm is proposed. This algorithm adopts the nonlinear dynamic adaptive update weight to improve the convergence speed. The crossover operator in the dif ferential evolution algorithm is introduced to improve the global exploration ability of the al gorithm. The mutation strategy of differential evolution algorithm is used to generate candi date solutions to overcome the decline of population diversity and avoid the local optimum. The algorithm has been used to optimize the two test functions. The simulation result shows that the proposed algorithm is a global optimization algorithm with fast convergence speed and high convergence precision.
作者 董翠英 曹晓月 DONG Oui-ying;OAO Xiao-yue(School of Intelligence and In{ormation Engineering,Tangshan University,Tangshan 063000,China)
出处 《唐山学院学报》 2018年第6期5-8,37,共5页 Journal of Tangshan University
关键词 粒子群算法 差分进化算法 自适应粒子群算法 particle swarm optimization differential evolution algorithm adaptive particle swarm optimization
  • 相关文献

参考文献5

二级参考文献40

  • 1俞欢军,张丽平,陈德钊,胡上序.基于反馈策略的自适应粒子群优化算法[J].浙江大学学报(工学版),2005,39(9):1286-1291. 被引量:29
  • 2高鹰.一种自适应扩展粒子群优化算法[J].计算机工程与应用,2006,42(15):12-15. 被引量:17
  • 3杨光友,陈定方,周国柱.粒子个体最优位置变异的粒子群优化算法[J].哈尔滨工程大学学报,2006,27(B07):531-536. 被引量:3
  • 4胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 5Kennedy J, Eberhart R.Particle swarm optimization[C]//Proceedings of IEEE Int Conf on Neural Networks,Perth,Australia, 1995: 1942-1948.
  • 6Shi Y, Eberhart R C.A modified particle swarm optimizer[C]//Pro- ceedings of the IEEE International Conference Evolutionary Com- putation,Anchorage, Alaska, 1998,5 : 4-9.
  • 7Shi Y, Eberhart R C. A Modified Particle Swarm Optimizer [C]//Proceedings of the IEEE Conference on Evolutionary Computation.Piscataway, NJ: IEEE Press, 1998, 69-73.
  • 8Shi Y, Eberhart R C. Fuzzy Adaptive Particle Swarm Optimization[C]//Proceedings of the IEEE Conference on Evolutionary Computation. Piscataway, NJ: IEEE Press, 2001, 101-106.
  • 9Kennedy J, Eberhart R C. Particle Swarm Optimization [C]//IEEE International Conference on Neural Networks. Piscataway, NJ:IEEE Press, 1995, 1942-1948.
  • 10Eberhart R C, Shi Y. Particle Swarm Optimization: developments,applications and resources [C]//Proc. 2001 Congress Evolutionary Computation. Piscataway, N J: IEEE Press, 2001, 81-86.

共引文献166

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部