期刊文献+

基于多特征尺度特征融合的航空指挥动作识别

Aviation Guide Gesture Recognition Based on Multi-Feature Scale Feature Fusion
下载PDF
导出
摘要 视觉辅助引导系统(Visual aided Guide System,VaGS)是未来航空运输必不可少的重要组成部分,可以大大节省地面指挥和引导资源,提高安全性。VaGS的核心技术是识别地面指挥员手势并将其转化为指令。介绍了一种新的高效手势识别体系结构,它主要包括2个部分:(1)采用多尺度浅层结构进行特征学习,将全局身体姿态特征与局部手势特征提这两种尺度特征进行融合;(2)所提取的特征输入到超限学习机(Exteme Learning Machine,ELM)中进行分类,输出指令。实验结果表明,在自建的40个类别的航空指挥动作数据集中,准确率达到98.5%,单帧用时0.13 ms。 Visual aided Guide System (VaGS) is an essential part of the future air transport , which can greatly save the ground command and guide the resources and improve the security. The core technology of VaGS is to identify the ground commander's gestures and translate them into instructions. In this paper, a new efficient gesture recognition architecture was introduced and it mainly included two parts: ① Using multi-scale shallow structures for feature learning, extracting and integrating global body pose features and local gesture features; ② Importing fusion features into an Extremum Learn.ing Machine (ELM) for classification, output instructions. The experimental results show that in 40 self-built aeronautical command movement data sets, the accuracy rate reaches 99.6%, and each frame uses 0.13 ms.
作者 李振宇 邓向阳 张立民 王彦哲 LI Zhenyu;DENG Xiangyang;ZHANG LiMin;WANG Yanzhe(Naval Aviation University,Yantai Shandong 264001,China)
机构地区 海军航空大学
出处 《海军航空工程学院学报》 2018年第5期465-472,共8页 Journal of Naval Aeronautical and Astronautical University
基金 国家自然科学基金资助项目(91538201) 泰山学者工程专项基金资助项目
关键词 航空动作识别 超限学习机 多尺度卷积神经网络 视觉辅助引导系统 aviation gesture recognition extreme learning machine multi-scale convolutional neural networks visual aid.ed guide system
  • 相关文献

参考文献1

二级参考文献60

  • 1Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors. Nature, 1986, 323: 533-536.
  • 2Hagan M T, Menhaj M B. Training feedforward networks with the marquardt algorithm. IEEE Trans Neural Netw, 1994, 5:989-993.
  • 3Wilamowski B M, Yu H. Neural network learning without backpropagation. IEEE Trans Neural Netw, 2010, 21: 1793-1803.
  • 4Chen S, Cowan C, Grant P. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans Neural Netw, 1991, 2:302-309.
  • 5Li K, Peng J X, Irwin G W. A fast nonlinear model identification method. IEEE Trans Automat Contr, 2005, 50: 1211-1216.
  • 6Hornik K. Approximation capabilities of multilayer feedforward networks. Neural netw, 1991, 4:251 257.
  • 7Hassoun M H. Fundamentals of Artificial Neural Networks. MIT Press, 1995. 35-55.
  • 8Cybenko G. Approximation by superpositions of a sigmoidal function. Math Control Signal Syst, 1989, 2:303-314.
  • 9White H. Artificial Neural Networks: Approximation and Learning Theory. Blackwell Publishers, Inc., 1992. 30-100.
  • 10Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings of IEEE International Joint Conference on Neural Networks, Budapest, 2004. 985-990.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部