期刊文献+

基于用户偏好和可疑度的推荐方法研究 被引量:3

Research on recommendation method based on user preference and suspicious degree
下载PDF
导出
摘要 针对传统推荐算法在推荐过程中存在忽略用户偏好、用户恶意虚假信息和时间序列等问题,引入用户兴趣模型,结合用户可疑度与时间效应计算更新用户相似度,经过深度学习网络得到最佳推荐目标。为避免出现数据过拟合情况,在利用贪心思想训练用户数据时,给隐含层和可见层均加上了用户偏好,一定程度上提高了深度学习网络的自学习能力。将改进的算法与传统协同过滤推荐算法在MovieLens数据集上作推荐对比实验,实验结果证明,相对于传统的推荐算法,改进的推荐算法可以大大提高项目推荐的精确度。 In the recommended process,the traditional algorithm has several problems. For examples,the algorithm ignored the customer preference and the customer's malevolence,also,it provided a variety of false information,even for time series problems. This paper introduced users' interests modeling while it built the model. Then,it toke about users' suspicious degree and time effects used to calculate and updated users' similarity. In the end,it would highlight the optimum recommended target. In order to avoid data overfitting,it used the greedy algorithm to train the user's data,which added a preference to the hidden layer and the visible layer. Finally,this method found the optimum solution and improved study ability with deep learning network. It compared the experiments about improvement recommended algorithms and traditional recommended in the Movie-Lens of data collections. The result displays that compare to the old fashioned recommended algorithms,the improved one can greatly improve the accuracy of project recommendation.
作者 吴彦文 刘闯 Wu Yanwen;Liu Chuang(College of Physical Science & Technology,Central China Normal University,Wuhan 430079,China)
出处 《计算机应用研究》 CSCD 北大核心 2018年第12期3632-3634,共3页 Application Research of Computers
基金 2016年湖北省教学研究资助项目(201631) 国家体育总局体育哲学社会科学研究资助项目(2015B054) 2015年华中师范大学信息化资助项目(CCNU15IT0310 CCNU15IT0116)
关键词 用户偏好 可疑度 时间效应 深度学习 user preferences degree of suspicion time effect deep learning
  • 相关文献

参考文献6

二级参考文献35

  • 1陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 2Goldberg D,Nichols D,Oki B,Terry D.Using collaborative filtering to weave an information tapestry.Communications of the ACM,1992,35(12):61-70.
  • 3Resnick P,Iacovou N,Suchak M,Bergstorm P,Riedl J.GroupLens:An open architecture for collaborative filtering of netnews//Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work.Chapel Hill,North Carolina,United States,1994:175-186.
  • 4Shardanand U,Maes P.Social information filtering:Algorithms for automating "word of mouth"//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.Denver,Colorado,United States,1995:210-217.
  • 5Hill M,Stead L,Furnas G.Recommending and evaluating choices in a virtual community of use//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.Denver,Colorado,United States,1995:194-201.
  • 6Sarwar B M,Karypis G,Konstan J A,Riedl J.Application of dimensionality reduction in recommender system-A case study//Proceedings of the ACM WebKDD Web Mining for E-Commerce Workshop.Boston,MA,United States,2000:82-90.
  • 7Massa P,Avesani P.Trust-aware collaborative filtering for recommender systems.Lecture Notes in Computer Science,2004,3290:492-508.
  • 8Vincent S-Z,Boi Faltings.Using hierarchical clustering for learning the ontologies used in recommendation systems//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Jose,California,United States,2007:599-608.
  • 9Park S-T,Pennock D M.Applying collaborative filtering techniques to movie search for better ranking and browsing//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Jose,California,United States,2007:550-559.
  • 10Tomoharu I,Kazumi S,Takeshi Y.Modeling user behavior in recommender systems based on maximum entropy//Proceedings of the 16th International Conference on World Wide Web.Banff,Alberta,Canada,2007:1281-1282.

共引文献713

同被引文献37

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部