期刊文献+

基于改进深度信念网络的心血管疾病预测研究 被引量:6

Research on cardiovascular disease prediction model based on improved depth trust network
下载PDF
导出
摘要 心血管疾病传统预测模型准确率较低,基于浅层神经网络的模型预测结果方差较大。为此提出一种基于改进深度信念网络的心血管疾病预测模型,利用重构误差,自主确定网络深度,结合无监督训练和有监督调优,在提高模型预测准确率的同时保证稳定性。对UCI数据库中的statlog (heart)和heart disease database独立进行30次实验,结果显示预测准确率的均值分别为91. 26%、89. 78%,预测准确率的方差分别为5. 78、4. 46。 The prediction accuracy of the traditional cardiovas cular disease model is low. The results of model prediction based on shallow neural network are too large. This paper proposed a cardiovascular disease prediction model based on improved depth trust network. It used the reconstruction error,autonomously determined the depth of the network. Combined unsupervised training and supervised optimization,it could improve the prediction accuracy and stability of the model. Using the prediction model based on depth learning mentioned,it tested the statlog( heart) and heart disease dataset database 30 times independently in experiments. The results show that the accuracy rate is 91. 26% and 89. 78% respectively,and the variance is 5. 78 and 4. 46 respectively.
作者 逯鹏 王玉辰 李奇航 刘艳红 郭赛迪 Lu Peng;Wang Yuehen;Li Qihang;Liu Yanhong;Guo Saidi(a.School of Electrical Engineering,b.Industrial Technology Research Institute,Zhengzhou University,Zhengzhou 450001,China;Collaborative Innovation Center of lnternet Medical & Healthcare in Henan,Zhengzhou 450001,China)
出处 《计算机应用研究》 CSCD 北大核心 2018年第12期3668-3672,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(60841004 60971110 61172152 61473265) 河南省科技攻关资助项目(172102310393) 河南省高校科技创新团队支持计划资助项目(17IRTSTHN013) 河南省高校重点支持项目基金资助项目(18A520011)
关键词 心血管疾病 风险预测 深度信念网络 受限玻尔兹曼机 cardiovascular disease risk assessment depth trust network limited Boltzmann machine
  • 相关文献

参考文献3

二级参考文献25

  • 1李海峰,王炜.基于神经网络的交通方式选择模型[J].公路交通科技,2007,24(7):132-136. 被引量:16
  • 2Lee T S, Mumford D. Hierarchical Bayesian inference in the visual cortex[J]. Optical Society of America, 2003, 20(7): 1434-1448.
  • 3Rossi A F, Desimone R, Ungerleider L G. Contextual modulation in primary visual cortex of macaques[J]. J of Neuroscience, 2001, 21(5): 1689-1709.
  • 4Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
  • 5Dahl G E, Yu D, Deng L, et al. Large vocabulary continuous speech recognition with context-dependent DBN-HMMS[C]. Proc of IEEE Int Conf on Acoustics, Speech and Signal Processing. Prague, 2011:4688-4691.
  • 6Deselaers T, Hasan S, Bender O, et al. A deep learning approach to machine transliteration[C]. Proc of the 4th Workshop on Statistical Machine Translation. Athens, 2009: 233-241.
  • 7Fasel I, Berry J. Deep belief networks for real-time extraction of tongue contours from ultrasound duringspeech[C]. Proc of the 20th Int Conf on Pattern Recognition. Stroudsburg: Association for Computational Linguistics, 2010: 1493-1496.
  • 8Deng L, Seltzer M L, Yu D, et al. Binary coding of speech spectrograms using a deep auto-encoder[C]. Proc of the 1 lth Annual Conf on Int Speech Communication Association. Makuhair, 2010: 1692-1695.
  • 9Bengio Y. Learning deep architectures for AI[J]. Foundations & Trends in Machine Learning, 2009, 2(1): 1-127.
  • 10Yoshua Bengio, Pascal Lamblin, Dan Popovici, et al. Greedy layer-wise training of deep networks[C]. Advances in Neural Information Processing Systems 19 (NIPS 2006). Vancouver, 2007: 153-160.

共引文献1019

同被引文献57

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部