摘要
心血管疾病传统预测模型准确率较低,基于浅层神经网络的模型预测结果方差较大。为此提出一种基于改进深度信念网络的心血管疾病预测模型,利用重构误差,自主确定网络深度,结合无监督训练和有监督调优,在提高模型预测准确率的同时保证稳定性。对UCI数据库中的statlog (heart)和heart disease database独立进行30次实验,结果显示预测准确率的均值分别为91. 26%、89. 78%,预测准确率的方差分别为5. 78、4. 46。
The prediction accuracy of the traditional cardiovas cular disease model is low. The results of model prediction based on shallow neural network are too large. This paper proposed a cardiovascular disease prediction model based on improved depth trust network. It used the reconstruction error,autonomously determined the depth of the network. Combined unsupervised training and supervised optimization,it could improve the prediction accuracy and stability of the model. Using the prediction model based on depth learning mentioned,it tested the statlog( heart) and heart disease dataset database 30 times independently in experiments. The results show that the accuracy rate is 91. 26% and 89. 78% respectively,and the variance is 5. 78 and 4. 46 respectively.
作者
逯鹏
王玉辰
李奇航
刘艳红
郭赛迪
Lu Peng;Wang Yuehen;Li Qihang;Liu Yanhong;Guo Saidi(a.School of Electrical Engineering,b.Industrial Technology Research Institute,Zhengzhou University,Zhengzhou 450001,China;Collaborative Innovation Center of lnternet Medical & Healthcare in Henan,Zhengzhou 450001,China)
出处
《计算机应用研究》
CSCD
北大核心
2018年第12期3668-3672,共5页
Application Research of Computers
基金
国家自然科学基金资助项目(60841004
60971110
61172152
61473265)
河南省科技攻关资助项目(172102310393)
河南省高校科技创新团队支持计划资助项目(17IRTSTHN013)
河南省高校重点支持项目基金资助项目(18A520011)
关键词
心血管疾病
风险预测
深度信念网络
受限玻尔兹曼机
cardiovascular disease
risk assessment
depth trust network
limited Boltzmann machine