摘要
针对传统HHT方法不能有效识别密集模态的问题,提出基于改进经验模态分解(EMD)的HHT密集模态识别方法。EMD密频信号分解能力不足是限制HHT法识别密集模态的主要原因,因此在EMD分解过程中嵌入信号调频(FM)和模态解相关操作提升其分解密频信号的能力,称改进后的方法为调频—解相关模态分解(FM-DEMD)。以FM-DEMD分解取代传统HHT法中的EMD分解,得到改进HHT模态识别方法。仿真实验证明,传统HHT法和ITD法密集模态识别失效时,改进HHT法仍能准确地识别密集模态信息。
In view of traditional HHT method which can't effectively identify dense modes,this paper proposed a modified HHT method based on improved empirical mode decomposition. The lack of decomposition ability of EMD was the main reason to limit HHT method to identify dense modes. Therefore,it would enhance the EMD decomposition capability by embedding signal frequency modulation( FM) and mode decorrelation operation into EMD decomposition process,and the combined mode decomposition method was called FM-DEMD. By replacing EMD in the traditional HHT method with FM-DEMD,then it obtained the modified HHT method. Simulation results show that the modified HHT method can accurately identify dense modes even if traditional HHT and ITD fail.
作者
荣钦彪
刘昉
宿策
Rong Qinbiao;Liu Fang;Su Ce(a.State Key Laboratory of Hydraulic Engineering Simulation & Safety,b.School of Civil Engineering,Tianjin University,Tianjin 300072,China;School of Water Resources & Electric Power,Qinghai University,Xining 810016,China)
出处
《计算机应用研究》
CSCD
北大核心
2018年第12期3761-3765,共5页
Application Research of Computers
基金
国家自然科学基金资助项目(51579172)
国家重点研发计划子课题资助项目(2016YFC0401902)
关键词
改进HHT法
经验模态分解
信号调频
解相关
密集模态
modified HHT method
empirical mode decomposition
signal frequency modulation
decorrelation
dense mode