期刊文献+

基于机器学习的交通数据分析与应用 被引量:2

Traffic Data Analysis and Application Based on Machine Learning
下载PDF
导出
摘要 对海量交通数据进行分析,可为实现智能交通调度提供一定的参考依据,并为进行相关可行性分析提供有效支撑。本文利用Python和Pandas数据处理模块,对成都市1.4+万辆出租车的GPS记录进行分析处理。借助于机器学习中的回归算法,实现对某出租车在某时段行驶于某条线路所需时间的预测,并通过网页交互的形式,为用户提供出租车及出行路线推荐方案。 Analysis of massive traffic data provides a convenient reference for modern traffic scheduling and feasibility prediction,and provide effective support for relevant feasibility analysis. This article uses the Python and Pandas module to deal with the GPS records of more than 14 thousand taxis in Chengdu. Through the regression prediction via machine learning,the forecasting of required time for a taxi to travel on a certain period of time is realized. Finally,the recommendation of travel routes and taxis for users through a web page is provided.
作者 张腾 林贵敏 邱立达 刘超明 韦玉婧 ZHANG Teng;LIN Guimin;QIU Lida;LIU Chaoming;WEI Yujing(College of Physics and Electronic Information Engineering,Fuzhou 350108,China)
出处 《现代信息科技》 2018年第12期16-18,共3页 Modern Information Technology
基金 闽江学院大学生校长基金项目(项目编号:103952018106 103952018122)
关键词 数据挖掘 机器学习 路线推荐 智能交通 data miming machine learning routes recommendation intelligent transportation
  • 相关文献

参考文献2

二级参考文献20

  • 1姜桂艳,常安德,张玮.基于GPS浮动车的路段行程时间估计方法比较[J].吉林大学学报(工学版),2009,39(S2):182-186. 被引量:12
  • 2翁剑成,荣建,于泉,任福田.基于浮动车数据的行程速度估计算法及优化[J].北京工业大学学报,2007,33(5):459-464. 被引量:22
  • 3AYAKO H, KAZUO N, KENJI T, et al. Prediction oftravel time in urban district based on state equation[ J]. Electronics and Communications in Japan, 2009, 92(7) : 1-11.
  • 4SIMMONS N, GATES G, BURR J. Commercial applications arising from a floating vehicle data system in Europe[ C ]//Proceedings of 9th World Congress on Intelligent Transport Systems. Chicago: CPS Conference Publishing Service, 2002 : 14-17.
  • 5CHANG Ande, JIANG Guiyan, NIU Shifeng. Traffic congestion identification method based on GPS equipped floating car[C]//The 3rd IEEE International Conference on Intelligent Computation Technology and Automation. Changsha: IEEE, 2010: 1069-1071.
  • 6QUIROGA C A. An integrated GPS-GIS methodology for performing travel time studies[D]. Baton Rouge: Louisiana State University, 1997.
  • 7WANG Rui, NAKAMURA H, MAKOTO G. Validationof an improved method to estimate expressway travel time by the combination of detector and probe data[J]. Journal of the Eastern Asia Society for Transportation Studies, 2003, 5 ( 1 ) : 2003-2014.
  • 8QUIROGA C A. Travel time studies with global positioning and geographic information systems: an integrated methodology[ J]. Transportation Research Part C, 1998, 6(1): 101-127.
  • 9ATLURI M P. Development estimating travel time in urban of an algorithm for network using GPS equipped vehicles [ D ]. Arlington : Texas University, 2004.
  • 10TORDAY A, DUMONT A G. Parameters influencing probe vehicle based travel time estimation accuracy [ C ]//4th Swiss Transport Research Conference. Ascona: [s. n. ], 2004: 1-15.

共引文献17

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部