摘要
六足机器人因其运动灵活、承载能力强和稳定性好等优点得到广泛的应用。为对六足爬壁机器人运动进行控制,首先要建立其运动学模型。因基于旋量理论的建模方法能够简化运动学计算过程的复杂性,基于旋量理论建立了六足爬壁机器人正运动学模型,并在此基础上求解机器人逆运动学。同时为了对比分析所建模型的准确性,我们在ADMAS上建立机器人虚拟样机仿真模型,并且设计步态,使虚拟样机末端执行器按照预定的轨迹运动。其次在MATLAB软件下根据建立的逆运动学模型求解机器人末端执行器按预定轨迹运动时各关节转动角度。通过对比两个模型各关节转动角度随时间变化的曲线,以及各关节角度误差和末端位移误差来验证建立的机器人运动学模型的正确性。研究结果表明,基于旋量理论建立的六足爬壁机器人的运动学模型精度高,能够作为多足机器人研究的基础。
Hexapod robot is widely used because of its flexible movement, strong carrying capacity and good stability.In order to control the motion of the hexapod wall-climbing robot, the kinematic model should be established. Since the modeling method based on screw theory can simplify the complexity of kinematics calculation. A kinematic model of six-legged climbing robot is established based on screw theory. And on this basis, the inverse kinematics of the robot is solved. At the same time, in order to compare and analyze the accuracy of the model, we set up the virtual prototype model of robot in ADMAS, and design the gait to make the virtual prototyping end effector move according to the predetermined trajectory.Secondly, according to the inverse kinematics model established under the MATLAB software to solve the robot end effector according to the predetermined trajectory movement of the joint rotation angle. The correctness of the kinematic model of the robot is verified by comparing the curve of the joint rotation angle with time and analyzing the joint angle error and the end displacement error.The results show that the kinematic model of the hexapod climbing-wall robot based on screw theory is high precision.Can be used as a basis for multi-legged robot research.
作者
邓超锋
魏武
侯荣波
余俊侠
DENG Chao-feng;WEI Wu;HOU Rong-bo;YU Jun-xia(School of Automation Science & Engineering,South China University of Technology,Guangdong Guangzhou 510641,China)
出处
《机械设计与制造》
北大核心
2018年第12期245-248,253,共5页
Machinery Design & Manufacture
基金
国家自然科学基金(61573148)
广东省科技重大专项(2015B010919007)
关键词
旋量理论
逆运动学
旋转步态
ADMAS仿真
转动角
Theory of Screw
Inverse Kinematics
Rotating Gait
ADMAS Simulation
Rotation Angle