期刊文献+

A Thermo-Magneto-Mechanically Coupled Constitutive Model of Magnetic Shape Memory Alloys 被引量:1

A Thermo-Magneto-Mechanically Coupled Constitutive Model of Magnetic Shape Memory Alloys
原文传递
导出
摘要 A macroscopic phenomenological constitutive model considering the martensite transformation and its reverse is constructed in this work to describe the thermo-magneto- mechanically coupled deformation of polycrystalline magnetic shape memory alloys (MSMAs) by referring to the existing experimental results. The proposed model is established in the frame- work of thermodynamics by introducing internal state variables. The driving force of martensite transformation, the internal heat production and the thermodynamic constraints on constitutive equations are obtained by Clausius dissipative inequality and constructed Gibbs free energy. The spatiotemporal evolution equation of temperature is deduced from the first law of thermodynam- ics. The demagnetization effect occurring in the process of magnetization is also addressed. The proposed model is verified by comparing the predictions with the corresponding experiments. It is concluded that the thermo-magneto-mechanically coupled deformation of MSMAs including the magnetostrietive and magnetocaloric effects at various temperatures can be reasonably described by the proposed model, and the magnetocaloric effect can be significantly improved over a wide range of temperature by introducing an additional applied stress. A macroscopic phenomenological constitutive model considering the martensite transformation and its reverse is constructed in this work to describe the thermo-magneto- mechanically coupled deformation of polycrystalline magnetic shape memory alloys (MSMAs) by referring to the existing experimental results. The proposed model is established in the frame- work of thermodynamics by introducing internal state variables. The driving force of martensite transformation, the internal heat production and the thermodynamic constraints on constitutive equations are obtained by Clausius dissipative inequality and constructed Gibbs free energy. The spatiotemporal evolution equation of temperature is deduced from the first law of thermodynam- ics. The demagnetization effect occurring in the process of magnetization is also addressed. The proposed model is verified by comparing the predictions with the corresponding experiments. It is concluded that the thermo-magneto-mechanically coupled deformation of MSMAs including the magnetostrietive and magnetocaloric effects at various temperatures can be reasonably described by the proposed model, and the magnetocaloric effect can be significantly improved over a wide range of temperature by introducing an additional applied stress.
出处 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2018年第5期535-556,共22页 固体力学学报(英文版)
基金 Financial supports by the National Natural Science Foundation of China (11602203), Young Elite Scientist Sponsorship Program by CAST (No. 2016QNRC001) and Fundamental Research Funds for the Central Universities (2682018CX43) are appreciated.
关键词 Magnetic shape memory alloys Constitutive model Martensite transformation Thermo-magneto-mechanically coupled deformation Magnetostrictive and magnetocaloric effects Magnetic shape memory alloys Constitutive model Martensite transformation Thermo-magneto-mechanically coupled deformation Magnetostrictive and magnetocaloric effects
  • 相关文献

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部