期刊文献+

Jamming Avoidance Response Inspired by Wave-type WeaMy Electric Fish

Jamming Avoidance Response Inspired by Wave-type WeaMy Electric Fish
原文传递
导出
摘要 Weakly electric fish use the electric field to detect objects in the neighborhood or communicate with conspecifics. They generate electric field with their electric organ and the electroreceptors sense the distortion of electric field caused by nearby objects. They use a modulated frequency signal of the Electric Organ Discharge (EOD), and it can be disturbed by similar frequency signals that neighboring weakly electric fish emit. They have a particular behavior response to change their EOD frequencies to avoid signal jamming. It is called jamming avoidance response. Inspired by the behavior of wave-type weakly electric fish, we propose an engineering perspective of jamming avoidance response model with the amplitude-phase modulation graph. The time course of the amplitude-phase graph of the EOD signal provides a cue to detect the jamming signal. We argue that the temporal integration can determine the shift direction of the EOD as well as the amount of the frequency shift to be moved frequency for the jamming avoidance response. Alternatively, as a fast adapting measure, the cross product of point vectors in the amplitude-phase graph allows early decision for jamming avoidance. We demonstrate the methods with simulations and the real experiments in the underwater environment. Weakly electric fish use the electric field to detect objects in the neighborhood or communicate with conspecifics. They generate electric field with their electric organ and the electroreceptors sense the distortion of electric field caused by nearby objects. They use a modulated frequency signal of the Electric Organ Discharge (EOD), and it can be disturbed by similar frequency signals that neighboring weakly electric fish emit. They have a particular behavior response to change their EOD frequencies to avoid signal jamming. It is called jamming avoidance response. Inspired by the behavior of wave-type weakly electric fish, we propose an engineering perspective of jamming avoidance response model with the amplitude-phase modulation graph. The time course of the amplitude-phase graph of the EOD signal provides a cue to detect the jamming signal. We argue that the temporal integration can determine the shift direction of the EOD as well as the amount of the frequency shift to be moved frequency for the jamming avoidance response. Alternatively, as a fast adapting measure, the cross product of point vectors in the amplitude-phase graph allows early decision for jamming avoidance. We demonstrate the methods with simulations and the real experiments in the underwater environment.
出处 《Journal of Bionic Engineering》 SCIE EI CSCD 2018年第6期982-991,共10页 仿生工程学报(英文版)
关键词 weakly electric fish electric organ discharge jamming avoidance response electrosensory system bioinspiration weakly electric fish electric organ discharge jamming avoidance response electrosensory system bioinspiration
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部