期刊文献+

Analysis of Cartilage Creep Recovery Using a Highly Dynamic Closed-loop Test System

Analysis of Cartilage Creep Recovery Using a Highly Dynamic Closed-loop Test System
原文传递
导出
摘要 The aim of this study was to analyze cartilage creep and creep recovery after static and cyclic loading. Up to now technical limitations have hindered the measurement of creep recovery. For this reason, we developed a closed loop micro creep and creep-recovery indentation test system with active force control. Bovine osteochondral explants were tested under static (110 kPa) and cyclic (100 cycles, 350 kPa/35 kPa, 1 Hz) loading conditions and subsequently creep recovery was measured. The cartilage thickness was determined using needle indentation. For static loading, the creep and creep-recovery rates were significantly different during the first 60 seconds (p 〈 0.05). Cyclic loading was assessed for the medial and lateral patella and resulted in a physiological patellar cartilage strain of 7.7% ± 2.6% and 8.2% ± 2.7%, respectively. We recorded a creep recovery of 97.8% ±2.1% for the medial and 98.3% ± 2.4% for the lateral patella. The advantage of this study over earlier in vitro studies is that we recorded creep-recovery profiles with an actively controlled setup. This allowed us to analyze creep recovery immediately after removing the creep load, in contrast to MRI-based in vivo studies. In future, the presented method will enable us to quantify spatial variations within articular joints. The aim of this study was to analyze cartilage creep and creep recovery after static and cyclic loading. Up to now technical limitations have hindered the measurement of creep recovery. For this reason, we developed a closed loop micro creep and creep-recovery indentation test system with active force control. Bovine osteochondral explants were tested under static (110 kPa) and cyclic (100 cycles, 350 kPa/35 kPa, 1 Hz) loading conditions and subsequently creep recovery was measured. The cartilage thickness was determined using needle indentation. For static loading, the creep and creep-recovery rates were significantly different during the first 60 seconds (p 〈 0.05). Cyclic loading was assessed for the medial and lateral patella and resulted in a physiological patellar cartilage strain of 7.7% ± 2.6% and 8.2% ± 2.7%, respectively. We recorded a creep recovery of 97.8% ±2.1% for the medial and 98.3% ± 2.4% for the lateral patella. The advantage of this study over earlier in vitro studies is that we recorded creep-recovery profiles with an actively controlled setup. This allowed us to analyze creep recovery immediately after removing the creep load, in contrast to MRI-based in vivo studies. In future, the presented method will enable us to quantify spatial variations within articular joints.
出处 《Journal of Bionic Engineering》 SCIE EI CSCD 2018年第6期1057-1066,共10页 仿生工程学报(英文版)
关键词 articular cartilage INDENTATION creep recovery ARTHRITIS regenerative tissue articular cartilage indentation creep recovery arthritis regenerative tissue
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部