摘要
The plastic deformation of the pipe made of Cu-based alloy hardened by incoherent nanoparticles and subjected to theuniform internal pressure was investigated. The limits of elastic and plastic resistance are determined. The insignificantexcess in the limit of the elastic resistance enables the plastic deformation in the most part of the pipe wall. The densities ofshear-forming dislocations and prismatic dislocation loops are higher in alloys strengthened with coarse particles than inalloys strengthened with fine particles. At small distances between the strengthening particles, this effect is the mostpronounced.
The plastic deformation of the pipe made of Cu-based alloy hardened by incoherent nanoparticles and subjected to theuniform internal pressure was investigated. The limits of elastic and plastic resistance are determined. The insignificantexcess in the limit of the elastic resistance enables the plastic deformation in the most part of the pipe wall. The densities ofshear-forming dislocations and prismatic dislocation loops are higher in alloys strengthened with coarse particles than inalloys strengthened with fine particles. At small distances between the strengthening particles, this effect is the mostpronounced.