期刊文献+

关于晶体制约定理的一个严格证明(英文) 被引量:1

A rigorous proof on the crystallographic restriction theorem
下载PDF
导出
摘要 关于晶体制约定理,有必要研究和提出更加严格和完美的证明。不存在C5轴等价于不能够用相互之间无任何空隙的五边形填充满所有的空间。以这一观点为基础,本文利用纯粹的数学方法严格地证明了不存在晶体的C5和Cn(n≥7)对称轴,而允许存在1,2,3,4以及6重转动对称轴,从而证明了晶体的转动对称轴只能够存在C1,C2,C3,C4和C6。 It is significant to find a more rigorous and satisfactory proof of the crystallographic restriction theorem . The inexistence of C 5 axis of symmetry is equivalent of that pentagons are impossible to fill all the space with a connected array of pentagons. On the basis of this viewpoint, using a purely mathematical approach the paper rigorously proves that C5 and Cn (n≥7) axes of symmetry can not exist , and one-, two-, three-, four-and six-fold axes of rotational symmetry are allowable, therefore, the axes of symmetry of the crystal can merely exist C1, C2, C3, C4 and C6.
作者 张跃
出处 《湖南文理学院学报(自然科学版)》 CAS 2015年第1期14-16,共3页 Journal of Hunan University of Arts and Science(Science and Technology)
关键词 晶体制约定理 五边形 n(n≥7)多边形 固有转动 the crystallographic restriction theorem pentagons n-sided(n≥7) polygons proper rotation
  • 相关文献

参考文献4

  • 1Howard Hiller.The crystallographic restriction in higher dimensions. Acta Crystallographica Section A Foundations of Crystallography . 1985
  • 2C. Kittel.Introduction to solid state physics (6th edition), John Wiley & Sons. New York . 1986
  • 3Sharma B D.Restrictions upon rotation and inversion axes in crystals. Journal of Chemical Education . 1983
  • 4Animalu A O E.Intermediate Quantum Theory of Crystalline Solids. . 1977

共引文献1

同被引文献9

  • 1Hall G L. Correction to Fuchs' calculation of the electrostatic energy ofa Wigner solid [J]. Phys Rev B, 1979, 19(8): 3 921 -3 932.
  • 2Callaway J, Glasser M L. Fourier Coefficients of Crystal Potentials [J]. Phys Rev, 1958, 112(1): 73-77.
  • 3Kleinman L. Comment on the average potential ofa Wigner solid [J]. Phys Rev B, 1981, 24(12): 7 412-7 414.
  • 4Hall G L. Response to "Comment on the average potential ofa Wigner solid" [J]. Phys Rev B, 1981, 24(12): 7 415-7 418.
  • 5Callaway J. Quantum Theory of the Solid State [M]. 2nd Edition. San Diego: Academic Press, INC, 1991: 16-19.
  • 6Bradbury T C. Mathematical Methods with Applications to Problems in Physical Sciences [M]. New York: John Wiley & Sons, 1984: 109-110.
  • 7Ashcroft N W, Mermin N D. Solid State Physics [M]. San Francisco: Holt, Rinehart and Winston, 1976.
  • 8游效曾.离子的极化率[J].科学通报,1974,19(9):419-423.
  • 9Kittel C. Introduction to Solid State Physics [M]. 6th Edition. New York: John Wiley & Sons, Inc, 1986.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部