期刊文献+

锂离子电池硅氧化物负极材料的研究进展 被引量:9

Development of Silicon Suboxide Anodes for Lithium-ion Batteries
原文传递
导出
摘要 硅氧化物(SiOx)因具有高的比容量和良好的循环性能而备受关注,并被认为是最具潜力的下一代锂离子电池负极材料之一。在首次嵌锂时,SiOx与锂离子发生反应,生成惰性相Li2O和Li4SiO4。惰性相的生成可有效缓冲SiOx的体积效应,同时SiOx为多相纳米均匀分布结构,因此极大改善了其电极材料的循环性能。本文从SiOx的结构与电化学储锂机制方面出发,介绍了其与电化学性能的关系,阐明了SiOx负极材料主要存在的问题,归纳了研究者们的主要改性思路,最后对SiOx负极材料未来发展方向进行了展望。 Silicon suboxide (SiOx) is considered as one of the most promising anode materials for the next generation of lithium-ion batteries due to its high gravimetric capacity and good cycling performance. In the first lithiation process, inert phases Li2O and Li4SiO4 are formed by the reaction of the lithium-ion with the oxygen atom in SiOx, which effectively buffers the volume effect of SiOx aonde materials. From the homogeneous distribution of SiOx multiphase nanostructure, SiOx anodes exhibit an improved cycle performance. Based on the structure of SiOx and the related lithium storage mechanism of SiOx, their relationship and electrochemical properties was reviewed, the major problems existing in SiOxanodes was clarified and the current research progress to enhance SiOx electrochemical performance was discussed. In addition, the future development of SiOx anodes in rechargeable lithium-ion batteries was also prospected.
作者 吴永康 傅儒生 刘兆平 夏永高 邵光杰 WU Yongkang, FU Rusheng, LIU Zhaoping, XIA Yonggao, SHAO Guangjie(Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, Heibei, China; Ningbo Institute of Material Technology & Engineering (NIMTE), Chinese Academy of Scienee,Ningbo 315201, Zhejiang, China;State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, Hebei, China)
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2018年第11期1645-1652,共8页 Journal of The Chinese Ceramic Society
基金 国家重点研发计划(2016YFB0100100)
关键词 锂离子电池 负极材料 硅氧化物 电化学性能 lithium-ion batteries anode materials silicon suboxide electrochemical lithium performance
  • 相关文献

参考文献2

二级参考文献129

  • 1Goodenough J B,Park K S.J.Am.Chem.Soc.,2013,135:1167.
  • 2Li Y,Song J,Yang J.Renew.Sust.Energ.Rev.,2014,37:627.
  • 3Zhang W J.J.Power Sources,2011,196:13.
  • 4Park C M,Kim J H,Kim H,Sohn H J.Chem.Soc.Rev.,2010,39:3115.
  • 5Zamfir M R,Nguyen H T,Moyen E,Lee Y H,Pribat D.J.Mater.Chem.A,2013,1:9566.
  • 6McDowell M T,Ryu I,Lee S W,Wang C,Nix W D,Cui Y.Adv.Mater.,2012,24:6034.
  • 7Hovington P,Dontigny M,Guerfi A,Trottier J,Lagace M,Mauger A,Julien C M,Zaghib K.J.Power Sources,2014,248:457.
  • 8Zhou X,Yin Y X,Wan L J,Guo Y G.Chem.Commun.,2012,48:2198.
  • 9Wu H,Cui Y.Nano Today,2012,7:414.
  • 10Liang B,Liu Y,Xu Y.J.Power Sources,2014,267:469.

共引文献32

同被引文献50

引证文献9

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部