期刊文献+

Grafting of MIPs from PVDF Membranes via Reversible Addition-fragmentation Chain Transfer Polymerization for Selective Removal of p-Hydroxybenzoic Acid

Grafting of MIPs from PVDF Membranes via Reversible Addition-fragmentation Chain Transfer Polymerization for Selective Removal of p-Hydroxybenzoic Acid
原文传递
导出
摘要 Effective molecularly imprinted membranes(MIMs) were developed as an efficient adsorbent for the selective removal ofp-hydroxybenzoic acid(p-HB) from acetylsalicylic acid(ASA, aspirin). The MIMs were grafted successfully from poly(vinylidene fluoride) microfiltration membranes via reversible addition-fragmentation chain transfer(RAFT) polymerization. The graft copolymerization of acrylic acid(AA) in the presence of template p-hydroxybenzoic acid led to molecularly imprinted polymer(MIP) film coated membranes. The obtained MIMs were characterized by scanning electron microscopy(SEM), Fourier transform infrared spectrophotometer(FTIR) and Raman spectra, and batch mode adsorption studies were carried ont to investigate the specific adsorption equilibrium, kinetics and selective recognition properties of different MIMs. The kinetic properties of the MIMs could be well described by the pseudo-second-order rate equation. Selective permeation experiments were performed to evaluate the permeation selectivity of the p-HB imprinted membranes. The observed performances of the MIMs are applicable to the further purification of aspirin. Keywords Acetylsalicylic acid; Reversible addition-fragmentation chain transfer; Molecularly imprinted membrane; p-Hydroxybenzoic acid; Selective adsorption Effective molecularly imprinted membranes(MIMs) were developed as an efficient adsorbent for the selective removal ofp-hydroxybenzoic acid(p-HB) from acetylsalicylic acid(ASA, aspirin). The MIMs were grafted successfully from poly(vinylidene fluoride) microfiltration membranes via reversible addition-fragmentation chain transfer(RAFT) polymerization. The graft copolymerization of acrylic acid(AA) in the presence of template p-hydroxybenzoic acid led to molecularly imprinted polymer(MIP) film coated membranes. The obtained MIMs were characterized by scanning electron microscopy(SEM), Fourier transform infrared spectrophotometer(FTIR) and Raman spectra, and batch mode adsorption studies were carried ont to investigate the specific adsorption equilibrium, kinetics and selective recognition properties of different MIMs. The kinetic properties of the MIMs could be well described by the pseudo-second-order rate equation. Selective permeation experiments were performed to evaluate the permeation selectivity of the p-HB imprinted membranes. The observed performances of the MIMs are applicable to the further purification of aspirin. Keywords Acetylsalicylic acid; Reversible addition-fragmentation chain transfer; Molecularly imprinted membrane; p-Hydroxybenzoic acid; Selective adsorption
出处 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2018年第6期1051-1057,共7页 高等学校化学研究(英文版)
基金 Supported by the National Natural Science Foundation of China(No.21606099), the Natural Science Foundation of Jilin Province, China(No.20180623042TC) and the Science and Technology Research Foundation of the Department of Education of Jilin Province, China(Nos. JJKH20180 782KJ, JJKH20180761K J, JJKH20170376K J).
关键词 Acetylsalicylic acid Reversible addition-fragmentation chain transfer Molecularly imprinted membrane p-Hydroxybenzoic acid Selective adsorption Acetylsalicylic acid Reversible addition-fragmentation chain transfer Molecularly imprinted membrane p-Hydroxybenzoic acid Selective adsorption
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部