期刊文献+

基于多特征融合的人脸识别方法 被引量:3

The face recognition method based on the fusion of multi-features
下载PDF
导出
摘要 为了改善人脸识别方法只基于一种特征、识别方法单一造成的识别率低的问题。使用多种特征融合进行人脸识别,可以有效改善单一特征因光照、角度以及尺度变化对识别的影响,提高识别率。经过试验证实,将LBPH、SIFT以及通过卷积神经网络提取的VIPLFaceNet特征按照一定的权重进行组合时,可以有效的结合3种特征的识别特点,获得比单一特征更好的识别率。当VIPLFaceNet、SIFT和LBPH3种特征以4∶1∶5的权重进行融合时,可以获得95.35%的识别率,识别率明显提升。 In order to improve the problem of recognition rate which is based on only one feature, a single identification method,the writer uses a variety of feature fusion for face recognition, can effectively improve the recognition rate of a single feature, which will be affected by light, angle, and scale changes. The experiments show that when LBPH, SIFT, and VIPLFaceNet features are combined with a certain weight, a better recognition rate can be obtained than a single feature. When the three features of VIPLFaceNet, SIFT and LBPH are fused with a weight of 4∶1∶5, the recognition rate of 95.35% can be obtained, and the recognition rate is obviously improved compared with the single feature.
作者 DOGNERY SINALY SILUE DOGNERY SINALY SILUE(School of communication and Information Engineering,Shanghai University,Shanghai 20044,1,China;Institute of Smart City,Shanghai University,Shanghai 200444,China)
出处 《电子测量技术》 2018年第20期142-146,共5页 Electronic Measurement Technology
关键词 人脸识别 特征融合 多特征 face recognition fusion of features multi-features
  • 相关文献

参考文献5

二级参考文献151

  • 1尹洪涛,付平,孟升卫.基于局部特征融合的人脸识别[J].测试技术学报,2006,20(6):539-542. 被引量:5
  • 2张文超,山世光,张洪明,陈杰,陈熙霖,高文.基于局部Gabor变化直方图序列的人脸描述与识别[J].软件学报,2006,17(12):2508-2517. 被引量:82
  • 3Dalai N, Triggs B. Histograms of oriented gradients for human detection [C] //Proceedings ofConference Computer Vision and Pattern Recognition. Los Alamitos: IEEE Compute Society Press, 2005, 1:886-893.
  • 4Deniz O, Bueno G, Salito J, et al. Face recognition using histograms of oriented gradients [J]. Pattern Recognition Letters, 2011, 32(12): 1598-1603.
  • 5Yang P, Shan S G, Gao W, et al. Face recognition using Aria-Boosted Gabor features [C] //Proceedings of the 6th 1EEE International Conference on Automatic Face and Gesture Recognition. Los Alamitosl IEEE Computer Society Press, 2004:356-361.
  • 6Zhang W C, Shan S G, Gao W, et al. Local Gabor binary pattern histogram sequence ( LGBPHS ) : a novel non-statistical model for face representation and recognition [C] //Proceedings of the 10th IEEE International Conference on Computer Vision. Los Alamitos: IEEE Computer Society Press, 2005:786-791.
  • 7Tan X Y, Triggs B. Fusing Gabor and LBP feature sets for kernel based face recognition [C] //Proceedings of the 3rd International Conference on Analysis and Modeling of Faces and Gestures. Heidelberg: Springer, 2007:235-249.
  • 8Oiala T, Pietikainen M, Harwood D. A comparative study of texture measures with classification based on feature distributions [J]. Pattern Recognition, 1996, 29(1) : 51-59.
  • 9Ahonen T, Hadid A, Pietikainen M. Face description with local binary patterns: application to face recognition [M]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(12): 2037-2041.
  • 10Lowe D G. Distinctive image features from scale invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.

共引文献188

同被引文献27

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部