期刊文献+

一种余弦调频信号增强新算法研究 被引量:2

A Special Algorithm for Enhancement of Cosine Frequency Modulation Signals
下载PDF
导出
摘要 为了克服常规LMS算法抑制高斯噪声效果差、跟踪能力弱、且步长为零时无跟踪能力等缺点,利用高阶累积量抑制高斯噪声的性能,并将泄漏LMS算法和变步长LMS算法的优点统一在高阶累积量递推估计算法中,提出了基于高阶累积量泄漏-变步长类LMS算法迭代的余弦调频信号自适应增强新算法,对其原理进行了剖析。用实测运动目标辐射噪声数据,进行了动态仿真。结果表明:该算法能有效地克服基于LMS算法的自适应谱线增强器的不足,具有良好的抑制高斯有色噪声能力和跟踪性能。因此,本研究为水下运动目标识别与检测提供了新的技术途径。在工程实践中,具有重要的指导意义和应用价值。 When we use the conventional LMS-based ALE (adaptive line enhancement) algorithm to improve ability of underwater detection system to detect underwater target, there are three disadvantages: performance of handing Gaussian noise is bad, ability to trace time-varying signals is weak, and there will not be the ability to trace time-varying signals when the step size is zero. For greatly reducing these three disadvantages, we developed higher-order cumulant-based leakage-variable step size quasi-LMS adaptive line enhancement algorithm using the performance of cumulants in suppressing Gaussian noise and the advantages of leakage LMS algorithm and variable step size LMS algorithm, and analyzed its principle home. Based on the measured data radiated by the underwater moving-target, the enhancement process of cosine frequency modulation signals is dynamically simulated by the proposed algorithm. The simulation results show that the proposed algorithm can effectively overcome the shortcomings of the traditional LMS-based ALE algorithm and has a great capability of suppressing Gaussian colored noise and the performance of tracing time-varying signals. Accordingly, the research, in the paper, provides a new technical means for the recognition and detection of underwater moving-target.
出处 《系统仿真学报》 CAS CSCD 2002年第9期1133-1135,1140,共4页 Journal of System Simulation
基金 船舶国防科技预研基金资助(2000J42.2.8)
关键词 余弦调频信号 增强新算法 泄漏-变步长类LMS算法 高斯噪声 信号处理 leakage-variable step size quasi-LMS adaptive enhancement cosine frequency modulation signals Gaussian noise track
  • 相关文献

参考文献6

  • 1Simon Haykin. 自适应滤波器原理(英文版)[M]. 北京: 电子工业出版社, 1998, 338-738.
  • 2Kwong R H, Johnston E W. A Variable Step Size LMS Algorithm [J]. IEEE Trans. on Signal Process. 1992, 40(7): 1633-1643.
  • 3Anderson M M, Giannakis G B. Harmonic retrieval using higher- order statistics: A deterministic formulation [J]. IEEE Trans. on Signal Processing, 1995, 43(8): 1880-1889.
  • 4Swami A, Mendel J M. Cumulant-Based Approach to the Harmonic Retrieval and Related Problems [J]. IEEE Trans. on Signal Processing, 1997, 39(5): 1099-1109.
  • 5郭业才. 一种水中运动目标动态谱自适应增强新算法[A]. 西北工业大学第六届研究生学术年会论文集[C]. 西安:西北工业大学出版社, 2001. 484-489.
  • 6Ibranim H M, Gharieb R R. A higher order statistics-based adaptive line enhancement [J]. IEEE Trans. on Signal Processing, 1999, 47(2): 527-531.

同被引文献8

  • 1李林山,李志舜,马远良.一种后置平滑自适应相干累积算法[J].信号处理,1996,12(1):57-62. 被引量:4
  • 2Haykin S. Adaptive Filter Theory(3th Edition)[M]. Engle wood cliffs:Prentice-Hall, Inc. 1991.
  • 3Walliace R B, Goubran R A. Improved Tracking Adaptive Noise Canceller for Nonstationary Environments[J]. IEEE Trans. On signal processing, 1992, 40(3): 700-703.
  • 4Mendel J M. Tutorial on higher-order statistics(spectra) in signal processing and systems theory: Theoretical results and some applications[J]. Proc. of IEEE, 1991, 79(3): 278-305.
  • 5hinich, M J, Wilson G R. Detection of Non-Gauusian Signals in Non-Gaussian Noise Using the Bispectrum[J]. IEEE Trans. On ASSP,1990, 38(7): 1126-1131.
  • 6Gharieb R R. Higher order statistics based IIR notch filtering scheme for enhancing sinusoids in coloured noise[J]. IEEE Proc. Vision Image Signal processing, 2000, 147(2): 115-121.
  • 7李林山,李志舜,马远良.一种推广的自适应相干累积算法——基本原理与应用[J].西北工业大学学报,1992,10(2):147-152. 被引量:12
  • 8郭业才,赵俊渭,郭燚.组合圆形活塞声源远场指向特性的仿真研究[J].系统仿真学报,2002,14(4):522-524. 被引量:14

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部