期刊文献+

变量投影框架下基于Wahba问题的多点透视问题求解算法 被引量:5

Solving Perspective-n-Point Problem in Variable Projection Framework Based on Wahba Problem
原文传递
导出
摘要 提出一种在变量投影框架下的多点透视问题求解算法。多点透视问题是确定相机旋转与平移参数的基础问题,广泛应用于计算机视觉、摄影测量、机器人、空间交会以及虚拟现实等场合。相机的旋转与平移参数在变量投影的框架下被分开估计。首先,将平移参数固定,根据Wahba问题的解法求解出最优旋转矩阵;然后,应用奇异值分解导数的计算公式计算当前最优旋转矩阵对平移参数的导数,并由此计算出代价函数对平移参数的导数;最后,针对平移参数,采用Levenberg-Marquardt算法迭代优化代价函数,直到精度满足要求。实验结果证明,本文算法不仅误差较小,计算效率较高,而且具有较大的收敛域。 We propose an algorithm that solves the perspective-n-point problem in the framework of variable projection. The perspective-n-point is the problem of determining the rotation and translation parameters of a camera, which is widely used in computer vision, photogrammetry, robotics, space rendezvous and virtual reality. We separately estimate the rotation and translation parameters in the variable projection framework. Firstly, an optimal rotation matrix is solved by using the Wahba problem with fixed translation parameters. By applying the formula for the derivative of the singular value decomposition, the derivative of the optimal rotation matrix is calculated with respect to the translation parameters, then the derivative of the objective function with respect to the translation parameters is obtained. Finally, the objective function is minimized by Levenberg-Marquardt algorithm over the translation parameters. The experimental results show that the proposed algorithm is one of the most accurate and effective algorithms and has a large convergence basin.
作者 何颖 马戎 李岁劳 郭强 He Ying;Ma Rong;Li Suilao;Guo Qiang(School of Automation,Northwestern Polytechnical University,Xi'an,Shaanxi 710129,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2018年第11期242-248,共7页 Acta Optica Sinica
基金 航空基金(20150153002)
关键词 机器视觉 多点透视问题 变量投影 Wahba问题 machine vision perspective-n-point variable projection Wahba problem
  • 相关文献

参考文献2

二级参考文献27

  • 1R Hartley, A Zisserman. Multiple View Geometry in Computer Vision [M]. Cambridge University Press, Second Edition, 2004.
  • 2J Mcglone, E Mikhail, J Bethel. Manual of Photogrammetry [M]. American Society fbr Photogrammetry and Remote Sensing, fifth edition, 2004.
  • 3G N Desouza, A C Kak. Vision for mobil e robot navigation: A survey [J]. IEEE Transations on Pattern Analysis aod Machine Intelligence, 2002, 24(2): 237-267.
  • 4R Azuma, Y Baillot, R Behringer, et al: Recent advances in augmented reality [J]. IEEE Computer Graphics and Applications, 2001,21 (6): 34-47.
  • 5L Kneip, D Scaramuzza, R Siegwart. A novel parametrization of the perspective-three-point problem t]r a direct computation of absolute camera position and orientation [C]. Tbe 24th IEEE Conference on Computer Vision and Pattern Recogoition, 2011. 2969- 2976.
  • 6L Quan, Z Lan. Linear N-point camera pose determination [J]. IEEE Transations on Pattern Analysis and Machine Intelligence, 1999, 21(8): 774-780.
  • 7P D Fiore. Efficient linear solution of exterior m'ientation [J]. IEEE Transations on Pattern Analysis and Machine Intelligence, 2001, 23(2): 140-148.
  • 8A Ansar, K Daniilidis. Linear pose estimation from points or lines [J]. IEEE Transations on Pattern Analysis and Machine Intelligence, 2003, 25(5): 578-589.
  • 9V Lepetit, F M Noguer, P Fua. EPnP: An accurate O(n) solution to the PnP problem [J]. International Journal of Computer Vision, 2009, 81(2): 155-166.
  • 10S Q Li, C Xu, M Xie. A robust O(n) solution to the perspective-n-point problem [J]. IEEE Transations on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1444-1450.

共引文献44

同被引文献32

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部