期刊文献+

自动确定聚类中心的数据竞争算法 被引量:1

Automatically determine data competition algorithm for cluster center
下载PDF
导出
摘要 针对数据竞争算法采用欧式距离计算相似度、人为指定聚类簇数以及聚类中心无法准确自动确定等问题,提出了一种自动确定聚类中心的数据竞争聚类算法。引入了数据场的概念,使得计算出的势值更加符合数据集的真实分布;同时,结合数据点的势能与局部最小距离形成决策图完成聚类中心点的自动确定;根据近邻原则完成聚类。在人工以及真实数据集上的实验效果表明,提出的算法较原数据竞争算法具有更好的聚类性能。 Aiming at the similarity of Euclidean distance calculation, the number of clustering clusters and the clustering center can not be determined automatically and accurately, a data competition clustering algorithm is proposed to automatically determine the clustering center. Firstly, the concept of the data field is introduced so that the calculated potential value is more consistent with the true distribution of the data set. At the same time, the automatic determination of the clustering center is completed by combining the potential energy of the data point with the local minimum distance to form the decision graph. Principle to complete the cluster. The experimental results on the artificial and real data sets show that the proposed algorithm has better clustering performance than the original data competition algorithm.
作者 许家楠 张桂珠 XU Jianan;ZHANG Guizhu(School of Internet of Things Engineering,Jiangnan University,Wuxi,Jiangsu 214122,China)
出处 《计算机工程与应用》 CSCD 北大核心 2018年第24期136-142,163,共8页 Computer Engineering and Applications
基金 江苏省自然科学基金(No.BK20140165)
关键词 数据竞争 数据场 自动聚类 密度不均匀 data competition data field automatic clustering density inhomogeneous
  • 相关文献

参考文献7

二级参考文献64

  • 1杨志恒.基于Ward法的区域空间聚类分析[J].中国人口·资源与环境,2010,20(S1):382-386. 被引量:49
  • 2余建桥,张帆.基于数据场改进的PAM聚类算法[J].计算机科学,2005,32(1):165-167. 被引量:15
  • 3淦文燕,李德毅,王建民.一种基于数据场的层次聚类方法[J].电子学报,2006,34(2):258-262. 被引量:83
  • 4高能,冯登国,向继.一种基于数据挖掘的拒绝服务攻击检测技术[J].计算机学报,2006,29(6):944-951. 被引量:44
  • 5ANDERSON J P.Computer Security Threat Monitoring and Surveillance[R].James P Anderson Co,Fort Washington,Pennsylvania,1980.
  • 6PORTNOY L,ESKIN E,STOLFO S J.Intrusion detection with unlabeled data using clustering[A].Proceedings of ACM CSS Workshop on Data Mining Applied to Security (DMSA2001)[C].Philadelphia,2001.5-8.
  • 7JIANG S Y,SONG X,WANG H,et al.A clustering-based method for unsupervised intrusion detections[J].Pattern Recognition Letters,2006,27(7):802-810.
  • 8ESKIN E,ARNOLD A,PRERAU M,et al.A geometric framework for unsupervised anomaly detection:detecting intrusions in unlabeled data[A].Applications of Data Mining in Computer Security[C].Boston,2002.78-99.
  • 9OLDMEADOW J,RAVINUTALA S,LECKIE C.Adaptive clustering for network intrusion detection[A].Advances in Knowledge Discovery and Data Mining[C].Heidelberg,2004.255-259.
  • 10LEUNG K,LECKIE C.Unsupervised anomaly detection in network intrusion detection using clusters[A].Proceedings of the Twenty-Eighth Australasian Computer Science Conference[C].Sydney,2005.333-342.

共引文献138

同被引文献11

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部