摘要
液压胶管在硬岩掘进机(TBM)液压系统中大量使用,管内流体动力学行为影响系统的安全可靠性。为了得到振动环境下管内流体压力沿管长方向的衰减特性,基于复合材料经典层合板理论和流固耦合理论,建立缠绕式胶管轴向振动的流固耦合模型,得到沿胶管管长方向压力损失的数值计算公式,通过仿真与实验研究振动参数、结构参数和流体参数对压力衰减特性的影响,研究结果表明:沿程压力损失的幅值随着基础振动振幅的增加呈线性增长,随振动频率的增加而增加;随胶管管长和管径的增加,沿程损失波动的程度减弱;随流速的增加,沿程压力损失的波动比减小,流体黏度对沿程压力损失波动的影响较小。研究结果可为TBM管系设计和抗振设计提供理论依据。
Hydraulic hoses are widely used in the hydraulic systems of runnel boring machines (TBM). The dynamic behavior of the fluid in the hoses will affect the security and reliability of the system. In order to obtain the attenuation characteristics of the fluid pressure along the hose, the fluid-solid coupled models for axial vibration analysis of the wrapped hydraulic hoses are established based on classical laminated plate theory and classical fluid-solid coupled theory. The numerical calculation formula for pressure loss along the hose is derived. The influences of vibration parameters, structure parameters and fluid parameters on the attenuation characteristics of the pressure axe analyzed by simulation and experiment methods. The results show that the amplitude of the pressure loss increases linearly with the increasing of the amplitude of foundation vibration, and the pressure loss increases as the excitation frequency increases. When the length and diameter of the hose increase, the fluctuation of the pressure loss along the hose becomes weak. The pressure loss fluctuation ratio decreases with the increase of flow rate, and the fluid viscosity has less effect on the pressure loss fluctuation. This study provides a theoretical basis for anti-vibration design of TBM tube systems.
作者
李俊
杨忠炯
周立强
张高峰
LI Jun;YANG Zhongjiong;ZHOU Liqiang;ZHANG Gaofeng(College of Mechanical and Electrical Engineering,Central South University,Changsha 410083,China;State Key Laboratory of High Performance and Complex Manufacturing,Changsha 410083,China)
出处
《噪声与振动控制》
CSCD
2018年第6期17-23,共7页
Noise and Vibration Control
基金
国家重点基础研究发展计划(973计划)资助项目(2013CB035404)
关键词
振动与波
缠绕式液压胶管
流固耦合
沿程压力损失
波动比
vibration and wave
wrapped hydraulic hose
fluid-solid coupling theory
frictional pressure loss
fluctuation ratio