期刊文献+

面向欠约束几何系统的一种同伦求解方法 被引量:5

Solving Under-constrained Geometric System by Homotopy Method
下载PDF
导出
摘要 针对几何约束系统的数值求解过程中 ,经常发生的数值不稳定性问题 ,构造了一种面向欠约束系统的同伦方法 ,并将其与现有的求解与分解方法有机地结合起来 ,提出了一种牛顿 -同伦混合方法 ,在牛顿迭代失败的位置自动调用欠约束同伦法 ,既提高了几何约束求解器的效率 ,同时又保证了求解的效率 . When a geometric constraint system can not be fully decomposed, numerical solving methods are used, in which Newton-Raphson iteration method is the most popular. However, Newton-Raphson iteration method is not stable. To improve the stability of numerical geometric constraint solving, an homotopy method, named under constrained homotopy, is advanced in the paper especially for under-constrained geometric system. It can be combined with the decomposition of geometric constraint system and can be used together with other solving methods easily, and thus helps to the solving ability of geometric constraint solver. Some key problems of under constrained homotopy, such as construction of the homotopy function, homotopy path tracing and singularity analysis of homotopy path, are discussed in the paper. A pure homotopy method for under-constrained geometric systems is not very effective. To solve this problem, a hybrid Newton-Homotopy method is proposed. It makes use of both the fastness of Newton-Raphson iteration method and the stability of homotopy method and thus improves both the ability and the efficiency of the geometric constraint solver.
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2002年第9期956-961,共6页 Journal of Image and Graphics
基金 国家 8 6 3计划自动化领域项目 ( 9842 -0 0 3)
关键词 欠约束几何系统 约束求解 同伦法 约束分解 CAD 几何约束 求解器 Parametric design, Under-constrained system, Constraint solving, Homotopy method, Constraint decomposition
  • 相关文献

参考文献3

二级参考文献11

  • 1廖世俊,J Nonlinear Mech,1997年,32卷,5期,815页
  • 2廖世俊,应用基础与工程科学学报,1997年,5卷,2期,111页
  • 3廖世俊,Commun Nonlinear Sci Numer Simul,1996年,1卷,4期,26页
  • 4廖世俊,Int J Numer Methods Fluids,1996年,23卷,467页
  • 5廖世俊,Int J Numer Methods Fluids,1996年,23卷,739页
  • 6廖世俊,Int J Nonlinear Mech,1995年,30卷,3期,371页
  • 7廖世俊,Boundary Elements.17,1995年,67页
  • 8廖世俊,J Appl Mech,1992年,59卷,970页
  • 9廖世俊,J Ship Res,1992年,36卷,1期,30页
  • 10廖世俊,A kind of linear invariance under homotopy and some simple applications of it in mechanics,1992年

共引文献29

同被引文献40

  • 1高小山,蒋鲲.几何约束求解研究综述[J].计算机辅助设计与图形学学报,2004,16(4):385-396. 被引量:43
  • 2邹秀芬,刘敏忠,吴志健,康立山.解约束多目标优化问题的一种鲁棒的进化算法[J].计算机研究与发展,2004,41(6):985-990. 被引量:14
  • 3戴春来,张友良,邓安远.部分变量迭代法求解几何循环约束[J].计算机工程与科学,2005,27(5):29-32. 被引量:2
  • 4Robillson S. Extension of newton's method to nonlinear functions with values in a cone[ J]. Numerical Mathematics, 1972,19: 341-347.
  • 5Hentenryck P, Miehel L, Deville Y. Nomerica: A Modeling Language for Global Optimization[ M]. Cambridge: The MIT Press, 1997.
  • 6Endih S, Toma N, Yamada K. Immune algorithm for n-TSP[ J ]. IEEE International Conference on Systems, Man, and Cybernetics, 1998,4:3844-3849.
  • 7Marco Dorigo, Eric Gonbeau, Guy Theraulaz. Ant algorithm and stigmergy[ J ]. Future Generation Computer System, 2000,16 (5) :851-871.
  • 8Aldefeld B. Variation of Geometrices Based on a Geometric-Reasoning Method[J]. Computer Aided Design, 1988,20(3):117-126.
  • 9Lee J Y, Kim K.A 2-D Geometric Constraint Solver Using DOF Based Graph Reduction[J]. Computer Aided Design, 1998,30(11):883-896.
  • 10Kondo K. A Gebraic Method for Manipulation of Dimensional Relation Ships in Geometric Models[J]. Computer Aided Design, 1992,24(3):141-147.

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部