摘要
研究了食饵-捕食模型中食饵患病且能垂直传播的带Holling II功能性反应函数的生态-流行病模型。讨论了解的有界性及非负平衡点的存在性,运用Routh-Hurwitz判据得到了平衡点局部渐近稳定的充分条件。进一步研究了系统的持久性和Hopf分支存在的充分条件。
In this paper,we study an eco-epidemiological model with Holling II functional response function in a prey-predator model of prey with disease and vertical transmission. The boundedness of solutions to the proposed system and the sufficient conditions of equilibria existing are studied. The sufficient conditions for local asymptotic stability of equilibrium point are obtained by using RouthHurwitz criteria. Furthermore,we study the persistence of the system and the sufficient conditions for the existence of Hopf bifurcation.
作者
苏强
赵亚飞
吕贵臣
SU Qiang;ZHAO Yafei;LYU Guichen(College of Science,Chongqing University of Technology,Chongqing 400054,China)
出处
《重庆理工大学学报(自然科学)》
CAS
北大核心
2019年第3期220-224,共5页
Journal of Chongqing University of Technology:Natural Science
基金
重庆市教委科学技术研究(KJQN201801136)
重庆理工大学教学改革研究项目(2014YB17)
重庆理工大学研究生创新项目(ycx2018257)
关键词
生态-流行病模型
渐近稳定
HOPF分支
持久性
eco-epidemiological model
local asymptotic stability
Hopf bifurcation
persistence