期刊文献+

一类具有垂直传播食饵-捕食模型的动力学行为 被引量:1

Dynamic Behavior of Prey-Predator Model with Vertical Infection
下载PDF
导出
摘要 研究了食饵-捕食模型中食饵患病且能垂直传播的带Holling II功能性反应函数的生态-流行病模型。讨论了解的有界性及非负平衡点的存在性,运用Routh-Hurwitz判据得到了平衡点局部渐近稳定的充分条件。进一步研究了系统的持久性和Hopf分支存在的充分条件。 In this paper,we study an eco-epidemiological model with Holling II functional response function in a prey-predator model of prey with disease and vertical transmission. The boundedness of solutions to the proposed system and the sufficient conditions of equilibria existing are studied. The sufficient conditions for local asymptotic stability of equilibrium point are obtained by using RouthHurwitz criteria. Furthermore,we study the persistence of the system and the sufficient conditions for the existence of Hopf bifurcation.
作者 苏强 赵亚飞 吕贵臣 SU Qiang;ZHAO Yafei;LYU Guichen(College of Science,Chongqing University of Technology,Chongqing 400054,China)
出处 《重庆理工大学学报(自然科学)》 CAS 北大核心 2019年第3期220-224,共5页 Journal of Chongqing University of Technology:Natural Science
基金 重庆市教委科学技术研究(KJQN201801136) 重庆理工大学教学改革研究项目(2014YB17) 重庆理工大学研究生创新项目(ycx2018257)
关键词 生态-流行病模型 渐近稳定 HOPF分支 持久性 eco-epidemiological model local asymptotic stability Hopf bifurcation persistence
  • 相关文献

参考文献2

二级参考文献31

  • 1孙树林,原存德.捕食者具有流行病的捕食-被捕食(SI)模型的分析[J].生物数学学报,2006,21(1):97-104. 被引量:51
  • 2KERMACK W O, MCKENDRICK A G. Contributions to the mathematical theory of epidemics-Ⅰ[J]. Proc Roy Soc, 1927, A115(772): 700-721.
  • 3KERMACK W O, MCKENDRICK A G. Contributions to the mathematical theory of epidemics- Ⅱ [J]. Proc Roy Soc, 1932, A138(834): 55-83.
  • 4HAMER W H. Epidemic disease in England[J]. Lancets 1906,167(4307): 733-739.
  • 5Ross R. The prevention of Malaria[M]. 2 nd ed. London: Marray, 1911.
  • 6GANI J, YAKOWITZ S, BLOUNT M. The spread and quarantine of HIV infection in a prison system[J]. SIAM J Appl Math, 1997, 57(6): 1 510-1 530.
  • 7HETHCOTE H W, MA Z, LIAO S B. Effects of quarantine in six endemic models for infectious diseases[J]. Mathematical Biosciences, 2002,180(1-2): 141-160.
  • 8VENTURINO E. The influence of diseases on Lotka- Volterra system[J]. Rockymount J Math, 1994, 24(1): 389-402.
  • 9XIAO Yan-ni, CHEN Lan-sun. A ratio-dependent predator-prey model with disease in the prey[J]. Applied Mathematics and Computation, 2002, 131(2-3): 397-414.
  • 10CHATTOPADHYAY J, ARINO O. A predator-prey model with disease in the prey[J]. Nonlinear Anal, 1999, 36(6): 747-766.

共引文献35

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部