期刊文献+

基于BP神经网络的铂铑热电偶的非线性校正 被引量:2

The Nonlinearity Correction of Platinum-rhodium Thermocouple Based on BP Neural Network
下载PDF
导出
摘要 热电偶是工业中广泛使用的测温元件,由于其自身的物理特性的限制,其输出热电势与被测温度之间存在着一定的非线性,这将增大温度的测量误差,从而影响测量精度。针对这一问题,提出了基于BP神经网络的非线性校正算法,以热电偶的热电动势为输入信号,以与其相对应的温度值作为输出信号,给出了前馈型BP神经网络的结构和训练权值的方法。通过实验仿真结果对比可知,此方法降低了热电偶测温的非线性误差,便于操作,大大提高了铂铑热电偶在温度测量中的测量精度。 Thermocouple temperature measurement device,which is widely used in industry,has a certain nonlinear re-lation between the output thermal potential and the measured temperature due to its physical characteristics, which will increase the temperature measurement error and affect the measurement accuracy. In order to solve this problem,a non-linear correction algorithm was proposed based on Back Propagation (BP) neural network with the thermoelectromotive force as the input signal and the corresponding temperature values as the output signal, and the structure of the feed forward BP neural network and methods of training weights can be got. By comparison with the simulation,the results show that the nonlinear error of thermocouple temperature measurement is reduced. It is relatively simple to implement and the temperature measurement accuracy of platinum-rhodium thermocouple is greatly enhanced.
作者 魏立林 高艺
出处 《长春理工大学学报(自然科学版)》 2015年第1期90-93,共4页 Journal of Changchun University of Science and Technology(Natural Science Edition)
关键词 BP网络 非线性 校正 BP neural network nonlinearity correction
  • 相关文献

参考文献6

二级参考文献18

  • 1沈杨,蒲海波,李兴林,孙杰.基于函数连接型神经网络的热电偶非线性校正[J].传感器技术,2005,24(4):13-15. 被引量:2
  • 2杨延西,刘丁.基于ANFIS的温度传感器非线性校正方法[J].仪器仪表学报,2005,26(5):511-514. 被引量:17
  • 3吴德会,王晓红,朱程辉.基于SVM的传感器非线性特性校正新方法[J].工业仪表与自动化装置,2005(4):3-5. 被引量:4
  • 4MartinTH著.神经网络设计[M].北京:机械工业出版社,2002.197-212.
  • 5Suykens J A K,Vandewalle J.Least Squares Support Vector Machine Classifiers[J].Neural Processing Letters,1999,9(3):293-300.
  • 6Suykens J A K,Lukas L,Vandewalle J.Sparse Approximation Using Least Squares Support Vector Machine[A].IEEE International Symposium on Circuits and Systems (ISCAS 2000)[C].Geneva,Swizerland,2000:757-760.
  • 7Klassen M S,Yoh-Han P.Characteristics of the Functional-Link Net:A Higher Order Delta Rule Net[A].IEEE Proceedings of 2nd Annual International Conference on Neural Networks[C]//San Diego,June 1988:507-513.
  • 8Vapnik V N.The Nature of statistical Learning Theory[M].New York:Springer-Verlag,Second Edition,1999.
  • 9Sethu Vijayakumar,Stefan Schaal. Local Adaptive Subspace Regression[J] 1998,Neural Processing Letters(3):139~149
  • 10Jingfang Zhou,Nicholas M. Patrikalakis,Seamus T. Tuohy,Xiuzi Ye. Scattered data fitting with simplex splines in two and three dimensional spaces[J] 1997,The Visual Computer(7):295~315

共引文献44

同被引文献12

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部