摘要
智能化是工程装备转型升级方向之一,以中间钻臂独有的工作空间为协调区间,将三臂凿岩机器人孔序规划问题化为涉及干涉的3-TSP问题,改进蚁群优化(ACO)算法平衡各钻臂钻孔时间,优化分配各钻臂钻孔任务,采用n/4动态候选列表的方法,加速算法收敛并获得更优解,同时去除每一次迭代最优路径中的相交路径,开发图形界面软件并嵌入算法。仿真结果显示整体效率提高35%。
Intelligence is one of the upgrading direction of engineering equipment. Taking the workspace of the middle boom as the collaborative workspace and converting the drilling sequence into three-traveling salesman problem( TSP) which involving interference between booms,improve ant colony optimization( ACO) algorithm to balance the time of drilling between booms. Meanwhile,optimizing distribution drill task of each boom,n/4 dynamic candidate list method is adopted to accelerate algorithm convergence and gain optimal solution. Remove the intersections in optimal paths of every iteration,develop graphical interface software and embed algorithm.Simulation result shows it can increase efficiency by 35 %.
作者
肖永前
郭勇
周烜亦
李云栋
XIAO Yong-qian;GUO Yong;ZHOU Xuan-yi;LI Yun-dong(State Key Laboratory for High Performance Complex Manufacturing,Central South University,Changsha 410083,China;National Enterprise R&D Center,Sunward Intelligent Equipment Co Ltd,Changsha 410100,China)
出处
《传感器与微系统》
CSCD
2019年第4期73-75,81,共4页
Transducer and Microsystem Technologies
基金
凿岩设备关键技术研究与产业化项目(2011XK4001)
国家自然科学基金资助项目(51375499)
关键词
三臂凿岩机器人
孔序规划
蚁群优化算法
平衡任务
three-boom tunnel-drilling robot
drilling sequence planning
ant colony optimization(ACO)algorithm
balance task