期刊文献+

基于多传感器的智能鞋设计 被引量:4

Design of smart shoes based on multisensor
下载PDF
导出
摘要 为了对人体足部的运动数据进行采集分析,研制了一种对足底压力及足部加速度和角速度数据进行采集的智能鞋系统。智能鞋除了鞋体本身外,包括压力鞋垫模块、无线传输模块和运动数据接收软件。智能鞋采集到足部运动数据后,通过蓝牙将数据发送到接收软件,并对运动数据进行显示和存储。通过多层长短期记忆(LSTM)网络对静坐、站立和行走三种基本的运动行为进行识别,实验验证了基于LSTM的运动行为识别模型的准确性,以及智能鞋所采集的运动数据的有效性,智能鞋可以用于进行人体运动行为识别的研究工作中。 In order to collect the data of human movements on foot and analyze,a smart shoe system is designed and implemented,which can collect plantar pressure,acceleration and angular velocity data. Besides the shoe body itself,the smart shoe system consists of pressure insole module,wireless transmission module and movement data receiving software. After movements data are collected,the data are transferred to receiving software through Bluetooth,then displayed on screen and stored. Through multi-layer long short-term memory( LSTM) network,the three kinds of actions can be identified,include sitting,standing and walking. The final experiment verifies that the LSTM recognition model is accuracy,the data collected through smart shoe is effective,and the smart shoes can be used in research of human action recognition.
作者 景元 陈炜峰 宋雅伟 张曦元 吉爱红 JING Yuan;CHEN Wei-feng;SONG Ya-wei;ZHANG Xi-yuan;JI Ai-hong(School of Automation,Nanjing University of Information Science&Technology,Nanjing 210044,China;Institute of Bio-inspired Structure and Surface Engineering,Nanjing University of Aeronautics&Astronautics,Nanjing 210016,China;Department of Sports&Health Science,Nanjing Sport Institute,Nanjing 210014,China;Olympic College of Nanjing Sport Institute,Nanjing 210000,China)
出处 《传感器与微系统》 CSCD 2019年第4期100-103,共4页 Transducer and Microsystem Technologies
基金 江苏省重点研发计划(社会发展)面上资助项目(BE2017766) 国家自然科学基金面上资助项目(51875281) 中央高校基本科研业务费资助项目(NP2018112)
关键词 智能鞋 长短期记忆(LSTM) 足底压力 惯性传感器 无线传输 运动行为 smart shoes long short-term memory(LSTM) plantar pressure inertial sensor wireless transmission movement behavior
  • 相关文献

参考文献6

二级参考文献44

  • 1王兰美,郭业民,潘志国.人体足底压力分布研究与应用[J].机械制造与自动化,2005,34(1):35-38. 被引量:57
  • 2董纪文.上海市中学生足弓指数测定及其分析[J].科技咨询导报,2007(4):125-125. 被引量:5
  • 3张庆来,孟站领.正常青年人左右足底压力分布特征的对比分析[J].中国组织工程研究与临床康复,2007,11(5):889-892. 被引量:54
  • 4Mannini A, Sabatini A M. Machine learning methods forclassifying human physical activity from on-body accelerometer-s[J]. Sensors,2010,10(2) :1154 —1175.
  • 5Schlomer T,Poppinga B,Henze N,et al. Gesture recognition witha wii controller [ C ] // Proceedings of the 2nd InternationalConference on Tangible and Embedded Interaction, New York :ACM, 2008: 11 -14.
  • 6He Z, Jin L, Zhen L, et al. Gesture recognition based on 3Daccelerometer for cell phones interaction [ C ]//IEEE Asia PacificConference on Circuits and Systems, APCCAS 2008, IEEE,2008:217-220.
  • 7Akl A, Feng C, Valaee S. A novel accelerometer-based gesturerecognition system [ J ]. IEEE Transactions on Signal Processing,2011,59(12):6197 -6205.
  • 8Cho S J,Choi E S,Bang W C, et al. Two-stage recognition of rawacceleration signals for 3D gesture-understanding cell phones [ C]//Proc of the Tenth International Workshop on Frontiers in Hand-writing Recognition, Nijmegen, Netherlands ,2006 :3854 —3859.
  • 9Mundt Carsten W, Montgomery Kevin N, Udoh Usen E, et al. Amultiparameter wearable physiologic monitoring system for spaceand terrestrial applications [ J ]. IEEE Transactions on InformationTechnology in Biomedicine,2005,9(3) :382 —391.
  • 10Klingeberg T,Schilling M. Mobile wearable device for long termmonitoring of vital signs [ J ]. Computer Methods and Programs inBiomedicine,2012,106(2) :89 -96.

共引文献65

同被引文献42

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部