摘要
针对传统人工检查黑车的方式不但耗时耗力而且效率低下的问题,提出一种新的自动检测黑车的方法。在Hadoop平台上,对物联网技术采集的全疆车辆加气数据进行分析;抽取车辆加气的时间特征和空间特征;利用随机森林算法研究车辆与驾驶员、加气站间的关系,从而发现具有异常加气模式的黑车车辆。在大规模真实数据集上的实验表明:提出的方法在黑车发现问题上有较高的准确率,可以用于帮助有关部门提高黑车检测的效率。
Aiming at the problem that traditional method of unlicensed taxis manual check is not only timeconsuming but also inefficient,a novel automatic unlicensed taxis detection method is proposed. Vehicles refueling data of Xinjiang Province collected by Internet of things( IOT) are analyzed on Hadoop platform. Spatial features and temporal features of vehicles refueling are extracted. Random forest algorithm is applied in research on relationship between vehicles,drivers and gas stations to discover unlicensed taxis with abnormal refueling patterns. Experiments on real-world large-scale dataset show that the proposed method has high accuracy in detecting unlicensed taxis,and its application can help relevant department improve the efficiency of unlicensed taxis detection.
作者
赵清华
蒋同海
赵凡
马博
ZHAO Qing-hua;JIANG Tong-hai;ZHAO Fan;MA Bo(Xinjiang Institute of Physical and Chemical Technology,Chinese Academy of Sciences,Urumqi 830011,China;University of Chinese Academy of Sciences,Beijing 100049,China;Xinjiang Laboratory of Minority Speech and Language Information Processing,Urumqi 830011,China)
出处
《传感器与微系统》
CSCD
2019年第4期139-142,共4页
Transducer and Microsystem Technologies
基金
中国科学院西部之光人才培养计划项目(2016-QNXZ-A-3)
新疆维吾尔自治区"十三五"重大专项项目(2016A03007-2)
新疆维吾尔自治区高技术计划项目(201512103)
关键词
异常车辆检测
黑车检测
时空数据
特征抽取
abnormal vehicle detection
unlicensed taxis detection
spatio-temporal data
feature extraction