期刊文献+

基于K-means^(++)的WiFi指纹定位算法 被引量:4

Research on WiFi fingerprint localization algorithm based on K-means^(++)
下载PDF
导出
摘要 针对接收信号强度(RSS)的波动性、易受干扰等特征,在匹配算法时易被较远处参考点所干扰,导致定位结果偏差较大,提出了一种基于聚类结果的指纹定位算法。与传统的按参考点处信号强度进行聚类不同,采取了利用K-means^(++)算法按参考点位置聚类的方法。在聚类的结果上,选择RSS均值最大的M个AP,使用有监督的学习算法KNN对测试点进行分类,再用确定性的匹配算法加权K最近邻居法来计算位置坐标。实验结果表明:所提方法在定位性能上比按信号强度聚类的方法有较大提高。 Aiming at characteristics of received signal strength(RSS),such as volatility,susceptibility to interference and problem that it is easy to be disturbed by the remote reference point(RP)in the algorithm matching process,and resulting in a large deviation of the finalized positioning results,a fingerprint localization algorithm based on clustering results is proposed.Different from traditional clustering by reference point signal strength,K-means++algorithm by reference points location clustering is used.Select M APs(max mean,MM)with the largest RSS mean,and using the supervised learning algorithm,KNN,to classify the test points,location coordinates can be calculated by using the deterministic matching algorithm weighted K-nearest neighbor(WKNN).The experimental results show that the proposed method greatly improve the localization characteristics than the method of clustering by signal strength.
作者 苏明明 鲁照权 陈龙 谢地 尤海龙 丁浩峰 SU Mingming;LU Zhaoquan;CHEN Long;XIE Di;YOU Hailong;DING Haofeng(School of Electrical Engineering and Automation,Hefei University of Technology,Hefei 230009,China)
出处 《传感器与微系统》 CSCD 2019年第5期140-142,145,共4页 Transducer and Microsystem Technologies
基金 国家级大学生创新项目(2011710359008) 合肥工业大学产学研校企合作基金资助项目(W2016JSKF0467 W2016JSKF0468)
关键词 K-means++ 位置聚类 最大均值AP选择 有监督学习KNN 加权K最近邻法 K-means++ location clustering max mean(MM)AP selection supervised learning KNN weighted K nearest neighbour(WKNN)method
  • 相关文献

参考文献3

二级参考文献18

  • 1吕志平,赵冬青,徐爱民,石善斌.位置服务系统(LBS)的构建[J].测绘科学,2005,30(2):92-94. 被引量:26
  • 2刘经南,邵连军,张训械.GNSS-R研究进展及其关键技术[J].武汉大学学报(信息科学版),2007,32(11):955-960. 被引量:82
  • 3Deng Zhongliang, Yu Yanpei, Yuan Xie, et al. Situation and development tendency of indoor positioning[ J]. Chi- na Communications, Mar. 2013:42-55.
  • 4Haeberlen A, Flannery E, Ladd A, et al. Practical robust localization over large-scale 802.11 wireless networks[ J ]. Tile iOth ACM International Conference on Mobile Compu- ring and Networking ( MOBICOM), Jan. 2004.
  • 5Saad M M, Bleakley C, Ballal T, et al. High-accuracy Reference-free Ultrasonic Location Estimation [ J ]. IEEE Transaction on Instrumentation and Measurement, 2012, 61(6) : 1561-1570.
  • 6Philipp B. Redpin-adaptive zero-configuration indoor lo- calization through user collaboration [ J ]. MELT'08 Pro- ceedings of the First ACM International Workshop on Mo- bile Entity Localization and Tracking in GPS-less Envi- ronments, 2008: 55-60.
  • 7Feng Chen, Anthea A W S, Valaee S, et al. Compres- sive Sensing Based Positioning Using RSS of WLAN Ac- cess Points[J]. IEEE Proc. INFOCOM, 2010.
  • 8Vahideh M, Andrew G D. WiFi Fingerprinting Signal Strength Error Modeling for Short Distances[ J ]. 2012 In- ternational Conference on Indoor Positioning and Indoor Navigation, Nov. 2012.
  • 9Chert A, Harko C, Lambert D, et al. An algorithm for fast, model-free tracking indoors [ C ] /J SIGMOBILE Mob. Comput. Commun. Rev. ,2007,11:48-58.
  • 10Milioris D, Kriara L, Papakonstantinou A, et al. Empiri- cal evuation of signal-strength fingerprint positioning in wireless LANs[ C]/Proceedings of the 13th ACM Interna- tional Conference on Modeling, Analysis, and Simulation of Wireless and Mobile Systems, Bodrum, Turkey, 2010.

共引文献30

同被引文献28

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部