期刊文献+

基于分块LBP融合特征和SVM的人脸识别算法 被引量:24

Face recognition algorithm based on block LBP fusion feature and SVM
下载PDF
导出
摘要 针对传统局部二值模式(LBP)特征提取方法在光线和人脸表情变化的情况下表现不佳、单一方法提取出的特征不能多角度表现出整张人脸的特征信息的问题,提出一种基于分块LBP融合特征和支持向量机(SVM)的人脸识别方法。先将人脸图像划分为不同的块,对每一块提取LBP特征;然后将不同分块的像素均值特征与LBP特征进行融合,用融合后的特征向量来表征人脸;最后引入SVM作为分类器对上述特征进行分类。在YALE、ORL标准人脸库以及自建人脸库上进行实验验证,实验结果表明:该方法识别准确率分别能达到95. 15%,99. 75%,96. 25%,对比实验显示,该方法优于C4. 5决策树、随机森林等传统方法。 Aiming at the problem that the traditional local binary pattern(LBP)feature extraction method does not perform well under the condition of changing of light and facial expression,and the feature extracted by a single method cannot express the feature information of the entire face from multiple angles,an approach of face recognition based on block local binary pattern(LBP)fusion feature and the support vector machine(SVM)is proposed.For each face image,it is divided into several blocks,and the LBP features are extracted from each block,then pixel means in different blocks are fused with LBP features.The fused feature vector by all the blocks including LBP features and average pixel values are used to represent the whole face.Finally,the SVM is introduced and used as classifier to classify the above features.Experiments are carried out on YALE,ORL and self-built face database.It turns out that the recognition accuracy can respectively reach 95.15%,99.75%and96.25%.Comparative experiments show that this method is superior to the traditional methods such as C4.5 decision tree and random forest.
作者 张敦凤 高宁化 王姮 冯兴华 霍建文 张静 ZHANG Dunfeng;GAO Ninghua;WANG Heng;FENG Xinghua;HUO Jianwen;ZHANG Jing(School of Information Engineering,Southwest University of Science and Technology,Mianyang 621000,China)
出处 《传感器与微系统》 CSCD 2019年第5期154-156,160,共4页 Transducer and Microsystem Technologies
基金 四川省科技计划资助项目(2019JDRC0141)
关键词 像素均值特征 分块局部二值模式(LBP) 支持向量机 特征融合 pixel mean feature block local binary pattern(LBP) support vector machine(SVM) feature fusion
  • 相关文献

参考文献7

二级参考文献44

  • 1Yu Chunyu,Zhang Yongming.Texture analysis of smoke for realtime fire detection[C]∥IEEE The Second International Workshop on Computer Science and Engineering,Qingdao,2009:511-515.
  • 2Chen T H,Yin Y H,Huang S F,et al.The smoke detection for early fire alarming system based on video processing[C]∥IEEE International Conference on Intelligent Information and Multimedia Signal Processing,2006:427-430.
  • 3Yuan Feiniu.A fast accumulative motion orientation model based on integral image for video smoke detection[J].Pattern Recognition Letters,2008,29(7):925-932.
  • 4Toreyin B U,Dedeoglu Y,Cetin A E.Contour-based smoke detection in video using wavelets[C]∥Proc of 14th European Signal Processing Conf(EUSIPCO),Florence:EURASIP,2006:1-5.
  • 5Ojala T,Pietikainen M,Maenpaa T T.Multiresolution gray-scale and rotation invariant texture classification with local binary pattern[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):971-987.
  • 6Guo Z H,Zhang L,Zhang D.Rotation invariant texture classification using LBP variance(LBPV)with global matching[J].Pattern Recognition,2010,43(3):706-719.
  • 7Cucchiara R,Grana C,Piccardi M,et al.Detecting moving objects,ghosts,and shadows in video streams[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(10):1337-1342.
  • 8吴爱国,杜春燕,李明.基于混合高斯模型与小波变换的火灾烟雾探测[J].仪器仪表学报,2008,29(8):1622-1626. 被引量:24
  • 9高涛,何明一,戴玉超,白磷.多级LBP直方图序列特征的人脸识别[J].中国图象图形学报,2009,14(2):202-207. 被引量:26
  • 10邓松,王汝传.一种基于网格服务的分布式GEP-BP分类算法[J].电子学报,2009,37(11):2600-2603. 被引量:2

共引文献36

同被引文献194

引证文献24

二级引证文献125

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部