摘要
针对机器人绑架后的重定位问题,提出了将粒子滤波与图像ORB(oriented FAST and rotated BRIEF)特征匹配结合起来的全局定位算法。机器人被绑架后,由运动模型预测产生的粒子集将不能正确估计机器人位姿。方法通过加入相机观测结果来修正粒子集。首先基于相机图像ORB特征匹配检测机器人所在区域,然后在相机关联的栅格子地图内撒粒子,最后通过粒子滤波的观测更新和重采样使粒子逐渐收敛实现重定位。实验证明:本文方法能够解决机器人绑架问题,在时间效率上优于加入随机粒子的自适应蒙特—卡罗定位算法,且具有更低定位误差。
Aiming at the problem of relocalization after robot abduction,a global localization algorithm based on particle filtering and image oriented FAST and rotated BRIEF(ORB)feature matching is proposed.When the problems occur,the set of particles predicted by the motion model cannot correctly estimate the pose of the robot.The particle set is modified by adding observation results of the camera.The location of the robot is detected based on ORB feature matching of the camera image.The particles are generated in the grid map area associated with the camera.The relocalization is achieved by observation update and re-sampling to gradually converge the particles.The experimental results show that the proposed algorithm can solve the kidnapped robot problem and is superior to the adaptive Monte Carlo localization(AMCL)algorithm with random particles in terms of time efficiency,and it has a lower positioning error.
作者
黄鹤
肖宇峰
刘冉
张华
HUANG He;XIAO Yufeng;LIU Ran;ZHANG Hua(Key Laboratory of Sichuan Province for Robot Technology Used for Special Environment,School of Information and Engineering,Southwest University of Science and Technology,Mianyang 621010,China)
出处
《传感器与微系统》
CSCD
2019年第7期142-145,共4页
Transducer and Microsystem Technologies
基金
国家核能开发科研项目([2016]1295)
国家自然科学基金资助项目(61601381)
四川省科技支撑计划资助项目(2015GZ0035)