期刊文献+

粒子滤波与ORB特征检测结合的移动机器人定位算法 被引量:5

Localization algorithm for mobile robot combining with particle filtering and ORB feature detection
下载PDF
导出
摘要 针对机器人绑架后的重定位问题,提出了将粒子滤波与图像ORB(oriented FAST and rotated BRIEF)特征匹配结合起来的全局定位算法。机器人被绑架后,由运动模型预测产生的粒子集将不能正确估计机器人位姿。方法通过加入相机观测结果来修正粒子集。首先基于相机图像ORB特征匹配检测机器人所在区域,然后在相机关联的栅格子地图内撒粒子,最后通过粒子滤波的观测更新和重采样使粒子逐渐收敛实现重定位。实验证明:本文方法能够解决机器人绑架问题,在时间效率上优于加入随机粒子的自适应蒙特—卡罗定位算法,且具有更低定位误差。 Aiming at the problem of relocalization after robot abduction,a global localization algorithm based on particle filtering and image oriented FAST and rotated BRIEF(ORB)feature matching is proposed.When the problems occur,the set of particles predicted by the motion model cannot correctly estimate the pose of the robot.The particle set is modified by adding observation results of the camera.The location of the robot is detected based on ORB feature matching of the camera image.The particles are generated in the grid map area associated with the camera.The relocalization is achieved by observation update and re-sampling to gradually converge the particles.The experimental results show that the proposed algorithm can solve the kidnapped robot problem and is superior to the adaptive Monte Carlo localization(AMCL)algorithm with random particles in terms of time efficiency,and it has a lower positioning error.
作者 黄鹤 肖宇峰 刘冉 张华 HUANG He;XIAO Yufeng;LIU Ran;ZHANG Hua(Key Laboratory of Sichuan Province for Robot Technology Used for Special Environment,School of Information and Engineering,Southwest University of Science and Technology,Mianyang 621010,China)
出处 《传感器与微系统》 CSCD 2019年第7期142-145,共4页 Transducer and Microsystem Technologies
基金 国家核能开发科研项目([2016]1295) 国家自然科学基金资助项目(61601381) 四川省科技支撑计划资助项目(2015GZ0035)
关键词 粒子滤波 ORB特征 机器人绑架 栅格地图 particle filtering ORB feature robot kidnapped grid map
  • 相关文献

参考文献3

二级参考文献42

  • 1厉茂海,洪炳镕,罗荣华,蔡则苏.基于单目视觉的移动机器人全局定位[J].机器人,2007,29(2):140-144. 被引量:30
  • 2余洪山,王耀南.基于粒子滤波器的移动机器人定位和地图创建研究进展[J].机器人,2007,29(3):281-289. 被引量:14
  • 3冷雪飞,刘建业,熊智.基于分支特征点的导航用实时图像匹配算法[J].自动化学报,2007,33(7):678-682. 被引量:33
  • 4田国会,李晓磊,赵守鹏,路飞.家庭服务机器人智能空间技术研究与进展[J].山东大学学报(工学版),2007,37(5):53-59. 被引量:37
  • 5SINA A N, FRAHM J M,POLLEFEYS M,et al. Fe-at- ure tracking and matching in video using progr-ammable graphics hardware [ J ]. Machine Vision and Applica- tion, 2011,22( 1 ) :207-217.
  • 6BAY H, ESS A, TUYTELAAR T, et al. Speeded-up robust features(SURF) [ J]. Computer Vision and Im- age Understanding ( S1077-3142 ), 2008, 110 ( 3 ) : 346- 359.
  • 7RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB : an efficient alternative to SIFT or SURF [ J ]. Proceed- ings of the IEEE International Conference on Computer Vision, Barcelona, Spain, 2011:2564-2571.
  • 8Xu X W, Wang X D, Tao Y. Smart space automatic services composition based on program synthesis and QoS model[J]. Journal of Computational Information Systems, 2014, 10(14): 6057-6066.
  • 9Dellaert F, Fox D, Burgard W, et al. Monte Carlo localization for mobile robots[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 1999: 1322-1328.
  • 10Fox D, Burgard W, Thrun S. Markov localization for mobile robots in dynamic environments[J]. Journal of Artificial Intelli- gence Research, 1999, 11: 391-427.

共引文献74

同被引文献31

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部